10.3.2 The semidefinite relaxation

We will now present a semidefinite relaxation for (108) (see [BCSZ14]).

Let us identify R_l with the $L \times L$ permutation matrix that cyclicly permutes the entries fo a vector by l_i coordinates:

$$R_l \left[\begin{array}{c} u_1 \\ \vdots \\ u_L \end{array} \right] = \left[\begin{array}{c} u_{1-l} \\ \vdots \\ u_{L-l} \end{array} \right].$$

This corresponds to an L-dimensional representation of the cyclic group. Then, (108) can be rewritten:

$$\begin{split} \sum_{i,j\in[n]} \langle R_{-l_i}y_i, R_{-l_j}y_j \rangle &= \sum_{i,j\in[n]} \left(R_{-l_i}y_i \right)^T R_{-l_j}y_j \\ &= \sum_{i,j\in[n]} \operatorname{Tr} \left[\left(R_{-l_i}y_i \right)^T R_{-l_j}y_j \right] \\ &= \sum_{i,j\in[n]} \operatorname{Tr} \left[y_i^T R_{-l_i}^T R_{-l_j}y_j \right] \\ &= \sum_{i,j\in[n]} \operatorname{Tr} \left[\left(y_i y_j^T \right)^T R_{l_i} R_{l_j}^T \right]. \end{split}$$

We take

$$X = \begin{bmatrix} R_{l_1} \\ R_{l_2} \\ \vdots \\ R_{l_n} \end{bmatrix} \begin{bmatrix} R_{l_1}^T & R_{l_2}^T & \cdots & R_{l_n}^T \end{bmatrix} \in \mathbb{R}^{nL \times nL},$$
(109)

and can rewrite (108) as

$$\begin{array}{ll} \max & \operatorname{Tr}(CX) \\ \text{s. t.} & X_{ii} = I_{L \times L} \\ & X_{ij} \text{ is a circulant permutation matrix} \\ & X \succeq 0 \\ & \operatorname{rank}(X) \leq L, \end{array}$$
 (110)

where C is the rank 1 matrix given by

$$C = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix} \begin{bmatrix} y_1^T & y_2^T & \cdots & y_n^T \end{bmatrix} \in \mathbb{R}^{nL \times nL},$$
(111)

with blocks $C_{ij} = y_i y_j^T$.

The constraints $X_{ii} = I_{L \times L}$ and $\operatorname{rank}(X) \leq L$ imply that $\operatorname{rank}(X) = L$ and $X_{ij} \in O(L)$. Since the only doubly stochastic matrices in O(L) are permutations, (110) can be rewritten as

$$\begin{array}{ll} \max & \operatorname{Tr}(CX) \\ \text{s. t.} & X_{ii} = I_{L \times L} \\ & X_{ij} \mathbf{1} = \mathbf{1} \\ & X_{ij} \text{ is circulant} \\ & X \ge 0 \\ & X \ge 0 \\ & x \ge 0 \\ & \operatorname{rank}(X) \le L. \end{array}$$

$$(112)$$

Removing the nonconvex rank constraint yields a semidefinite program, corresponding to (??),

$$\begin{array}{ll} \max & \operatorname{Tr}(CX) \\ \text{s. t.} & X_{ii} = I_{L \times L} \\ & X_{ij} \mathbf{1} = \mathbf{1} \\ & X_{ij} \text{ is circulant} \\ & X \ge 0 \\ & X \succeq 0. \end{array}$$

$$\begin{array}{l} (113) \\ \end{array}$$

Numerical simulations (see [BCSZ14, BKS14]) suggest that, below a certain noise level, the semidefinite program (113) is tight with high probability. However, an explanation of this phenomenon remains an open problem [BKS14].

Open Problem 10.3 For which values of noise do we expect that, with high probability, the semidefinite program (113) is tight? In particular, is it true that for any σ by taking arbitrarily large n the SDP is tight with high probability?

References

- [BCSZ14] A. S. Bandeira, M. Charikar, A. Singer, and A. Zhu. Multireference alignment using semidefinite programming. 5th Innovations in Theoretical Computer Science (ITCS 2014), 2014.
- [BKS14] A. S. Bandeira, Y. Khoo, and A. Singer. Open problem: Tightness of maximum likelihood semidefinite relaxations. In *Proceedings of the 27th Conference on Learning Theory*, volume 35 of *JMLR W&CP*, pages 1265–1267, 2014.

18.S096 Topics in Mathematics of Data Science Fall 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.