1.2.1 A related open problem

Open Problem 1.2 (Monotonicity of singular values [BKS13a]) Consider the setting above but with $p=n$, then $X \in \mathbb{R}^{n \times n}$ is a matrix with iid $\mathcal{N}(0,1)$ entries. Let

$$
\sigma_{i}\left(\frac{1}{\sqrt{n}} X\right)
$$

denote the i-th singular value ${ }^{\frac{4}{3}}$ of $\frac{1}{\sqrt{n}} X$, and define

$$
\alpha_{\mathbb{R}}(n):=\mathbb{E}\left[\frac{1}{n} \sum_{i=1}^{n} \sigma_{i}\left(\frac{1}{\sqrt{n}} X\right)\right],
$$

as the expected value of the average singular value of $\frac{1}{\sqrt{n}} X$.
The conjecture is that, for every $n \geq 1$,

$$
\alpha_{\mathbb{R}}(n+1) \geq \alpha_{\mathbb{R}}(n)
$$

Moreover, for the analogous quantity $\alpha_{\mathbb{C}}(n)$ defined over the complex numbers, meaning simply that each entry of X is an iid complex valued standard gaussian $\mathbb{C N}(0,1)$ the reverse inequality is conjectured for all $n \geq 1$:

$$
\alpha_{\mathbb{C}}(n+1) \leq \alpha_{\mathbb{C}}(n) .
$$

Notice that the singular values of $\frac{1}{\sqrt{n}} X$ are simply the square roots of the eigenvalues of S_{n},

$$
\sigma_{i}\left(\frac{1}{\sqrt{n}} X\right)=\sqrt{\lambda_{i}\left(S_{n}\right)}
$$

[^0]This means that we can compute $\alpha_{\mathbb{R}}$ in the limit (since we know the limiting distribution of $\lambda_{i}\left(S_{n}\right)$) and get (since $p=n$ we have $\gamma=1, \gamma_{-}=0$, and $\gamma_{+}=2$)

$$
\lim _{n \rightarrow \infty} \alpha_{\mathbb{R}}(n)=\int_{0}^{2} \lambda^{\frac{1}{2}} d F_{1}(\lambda)=\frac{1}{2 \pi} \int_{0}^{2} \lambda^{\frac{1}{2}} \frac{\sqrt{(2-\lambda) \lambda}}{\lambda}=\frac{8}{3 \pi} \approx 0.8488
$$

Also, $\alpha_{\mathbb{R}}(1)$ simply corresponds to the expected value of the absolute value of a standard gaussian g

$$
\alpha_{\mathbb{R}}(1)=\mathbb{E}|g|=\sqrt{\frac{2}{\pi}} \approx 0.7990,
$$

which is compatible with the conjecture.
On the complex valued side, the Marchenko-Pastur distribution also holds for the complex valued case and so $\lim _{n \rightarrow \infty} \alpha_{\mathbb{C}}(n)=\lim _{n \rightarrow \infty} \alpha_{\mathbb{R}}(n)$ and $\alpha_{\mathbb{C}}(1)$ can also be easily calculated and seen to be larger than the limit.

5 HH HFH

[BKS13a] A. S. Bandeira, C. Kennedy, and A. Singer. Approximating the little grothendieck problem over the orthogonal group. Available online at arXiv:1308.5207 [cs.DS], 2013.

MIT OpenCourseWare
http://ocw.mit.edu

18.S096 Topics in Mathematics of Data Science

Fall 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

[^0]: ${ }^{4}$ The i-th diagonal element of Σ in the SVD $\frac{1}{\sqrt{n}} X=U \Sigma V$.

