1.2.1 A related open problem

Open Problem 1.2 (Monotonicity of singular values [BKS13a]) Consider the setting above but with p = n, then $X \in \mathbb{R}^{n \times n}$ is a matrix with iid $\mathcal{N}(0, 1)$ entries. Let

$$\sigma_i\left(\frac{1}{\sqrt{n}}X\right),$$

denote the *i*-th singular value⁴ of $\frac{1}{\sqrt{n}}X$, and define

$$\alpha_{\mathbb{R}}(n) := \mathbb{E}\left[\frac{1}{n}\sum_{i=1}^{n}\sigma_{i}\left(\frac{1}{\sqrt{n}}X\right)\right],$$

as the expected value of the average singular value of $\frac{1}{\sqrt{n}}X$. The conjecture is that, for every $n \ge 1$,

$$\alpha_{\mathbb{R}}(n+1) \ge \alpha_{\mathbb{R}}(n)$$

Moreover, for the analogous quantity $\alpha_{\mathbb{C}}(n)$ defined over the complex numbers, meaning simply that each entry of X is an iid complex valued standard gaussian $\mathbb{CN}(0,1)$ the reverse inequality is conjectured for all $n \geq 1$:

$$\alpha_{\mathbb{C}}(n+1) \le \alpha_{\mathbb{C}}(n).$$

Notice that the singular values of $\frac{1}{\sqrt{n}}X$ are simply the square roots of the eigenvalues of S_n ,

$$\sigma_i\left(\frac{1}{\sqrt{n}}X\right) = \sqrt{\lambda_i\left(S_n\right)}.$$

⁴The *i*-th diagonal element of Σ in the SVD $\frac{1}{\sqrt{n}}X = U\Sigma V$.

This means that we can compute $\alpha_{\mathbb{R}}$ in the limit (since we know the limiting distribution of $\lambda_i(S_n)$) and get (since p = n we have $\gamma = 1$, $\gamma_- = 0$, and $\gamma_+ = 2$)

$$\lim_{n \to \infty} \alpha_{\mathbb{R}}(n) = \int_0^2 \lambda^{\frac{1}{2}} dF_1(\lambda) = \frac{1}{2\pi} \int_0^2 \lambda^{\frac{1}{2}} \frac{\sqrt{(2-\lambda)\lambda}}{\lambda} = \frac{8}{3\pi} \approx 0.8488.$$

Also, $\alpha_{\mathbb{R}}(1)$ simply corresponds to the expected value of the absolute value of a standard gaussian g

$$\alpha_{\mathbb{R}}(1) = \mathbb{E}|g| = \sqrt{\frac{2}{\pi}} \approx 0.7990,$$

which is compatible with the conjecture.

On the complex valued side, the Marchenko-Pastur distribution also holds for the complex valued case and so $\lim_{n\to\infty} \alpha_{\mathbb{C}}(n) = \lim_{n\to\infty} \alpha_{\mathbb{R}}(n)$ and $\alpha_{\mathbb{C}}(1)$ can also be easily calculated and seen to be larger than the limit.

Tghgtgpeg

[BKS13a] A. S. Bandeira, C. Kennedy, and A. Singer. Approximating the little grothendieck problem over the orthogonal group. *Available online at arXiv:1308.5207 [cs.DS]*, 2013.

18.S096 Topics in Mathematics of Data Science Fall 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.