0.2.2 Matrix AM-GM inequality

We move now to an interesting generalization of arithmetic-geometric means inequality, which has applications on understanding the difference in performance of with- versus without-replacement sampling in certain randomized algorithms (see [RR12]).

Open Problem 0.2 For any collection of $d \times d$ positive semidefinite matrices A_{1}, \cdots, A_{n}, the following is true:
(a)

$$
\left\|\frac{1}{n!} \sum_{\sigma \in \operatorname{Sym}(n)} \prod_{j=1}^{n} A_{\sigma(j)}\right\| \leq\left\|\frac{1}{n^{n}} \sum_{k_{1}, \ldots, k_{n}=1}^{n} \prod_{j=1}^{n} A_{k_{j}}\right\|,
$$

and
(b)

$$
\frac{1}{n!} \sum_{\sigma \in \operatorname{Sym}(n)}\left\|\prod_{j=1}^{n} A_{\sigma(j)}\right\| \leq \frac{1}{n^{n}} \sum_{k_{1}, \ldots, k_{n}=1}^{n}\left\|\prod_{j=1}^{n} A_{k_{j}}\right\|,
$$

where $\operatorname{Sym}(n)$ denotes the group of permutations of n elements, and $\|\cdot\|$ the spectral norm.
Morally, these conjectures state that products of matrices with repetitions are larger than without. For more details on the motivations of these conjecture (and their formulations) see [RR12] for conjecture (a) and [Duc12] for conjecture (b).

Recently these conjectures have been solved for the particular case of $n=3$, in [Zha14] for (a) and in [IKW14] for (b).

References

[Duc12] J. C. Duchi. Commentary on "towards a noncommutative arithmetic-geometric mean inequality" by b. recht and c. re. 2012.
[IKW14] A. Israel, F. Krahmer, and R. Ward. An arithmetic-geometric mean inequality for products of three matrices. Available online at arXiv:1411.0333 [math.SP], 2014.
[RR12] B. Recht and C. Re. Beneath the valley of the noncommutative arithmetic-geometric mean inequality: conjectures, case-studies, and consequences. Conference on Learning Theory (COLT), 2012.
[Zha14] T. Zhang. A note on the non-commutative arithmetic-geometric mean inequality. Available online at arXiv:1411.5058 [math.SP], 2014.

MIT OpenCourseWare
http://ocw.mit.edu

18.S096 Topics in Mathematics of Data Science

Fall 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

