
Open Problem 0.2 For any collection of d × d positive semidefinite matrices A1, · · · , An, the fol-
lowing is true:
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where Sym(n) denotes the group of
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of n elements,
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‖ · ‖ the spectral norm.

Morally, these conjectures state that products of matrices with repetitions are larger than with-
out. For more details on the motivations of these conjecture (and their formulations) see [RR12] for
conjecture (a) and [Duc12] for conjecture (b).

Recently these conjectures have been solved for the particular case of n = 3, in [Zha14] for (a)
and in [IKW14] for (b).

0.2.2 Matrix AM-GM inequality

We move now to an interesting generalization of arithmetic-geometric means inequality, which has
applications on understanding the difference in performance of with- versus without-replacement sam-
pling in certain randomized algorithms (see [RR12]).
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