18.S096: Homework Problem Set 3

Topics in Mathematics of Data Science (Fall 2015)

Afonso S. Bandeira

Due on November 3, 2015

Problem 3.1 Given n i.i.d. non-negative random variables x_{1}, \ldots, x_{n}, show that

$$
\mathbb{E} \max _{i} x_{i} \lesssim\left(\mathbb{E}\left[x_{1}^{\log n}\right]\right)^{\frac{1}{\log n}}
$$

Problem 3.2 Let $y_{1}, \ldots, y_{n} \in \mathbb{R}^{d}$ be i.i.d. random variables such that $\mathbb{E} y_{k}=0$ and

$$
\mathbb{E} y_{k} y_{k}^{T}=I_{d \times d}
$$

Show that, if

$$
\frac{\log d}{n}\left(\mathbb{E}\left\|y_{1}\right\|^{2 \log n}\right)^{\frac{1}{\log n}} \lesssim 1
$$

then

$$
\mathbb{E}\left\|\left(\frac{1}{n} \sum_{k=1}^{n} y_{k} y_{k}^{T}\right)-I_{d \times d}\right\| \lesssim \sqrt{\frac{\log d}{n}}\left(\mathbb{E}\left\|y_{1}\right\|^{2 \log n}\right)^{\frac{1}{2 \log n}}
$$

Note that $\|\cdot\|$ denotes spectral norm, and \lesssim means smaller up to constants.
Problem 3.3 Given a centered $\underline{1}^{1}$ random symmetric matrix $X \in \mathbb{R}^{d \times d}$, we define

$$
\sigma=\sqrt{\left\|\mathbb{E} X^{2}\right\|}
$$

and

$$
\sigma_{*}=\max _{v:\|v\|=1} \sqrt{\mathbb{E}\left(v^{T} X v\right)^{2}}
$$

1. Show that $\sigma \geq \sigma_{*}$.
2. If X has independent entries (except for the fact that $\left.X_{i j}=X_{j i}\right)$ such that $X_{i j} \sim \mathcal{N}\left(0, b_{i j}^{2}\right)$, show that
[^0]- $\sigma^{2}=\max _{i} \sum_{j=1}^{n} b_{i j}^{2}$
- $\sigma_{*} \leq 2 \max _{i j}\left|b_{i j}\right|$

Note that $\|\cdot\|$ denotes spectral norm, and in expressions with \mathbb{E} and a power, the power binds first. For example, by $\mathbb{E} X^{2}$, we mean $\mathbb{E}\left[X^{2}\right]$ and, by $\mathbb{E}\left(v^{T} X v\right)^{2}$, we mean $\mathbb{E}\left[\left(v^{T} X v\right)^{2}\right]$

Problem 3.4 (Norm concentration of projection) Let y_{1}, \ldots, y_{d} be i.i.d standard Gaussian random variables and $Y=\left(y_{1}, \ldots, y_{d}\right)$. Let $g: \mathbb{R}^{d} \rightarrow \mathbb{R}^{k}$ be the projection into the first k coordinates and $Z=g\left(\frac{Y}{\|Y\|}\right)=\frac{1}{\|Y\|}\left(y_{1}, \ldots, y_{k}\right)$ and $L=\|Z\|^{2}$. It is clear that $\mathbb{E} L=\frac{k}{d}$. Prove that L is very concentrated around its mean

- If $\beta<1$,

$$
\operatorname{Pr}\left[L \leq \beta \frac{k}{d}\right] \leq \exp \left(\frac{k}{2}(1-\beta+\log \beta)\right) .
$$

- If $\beta>1$,

$$
\operatorname{Pr}\left[L \geq \beta \frac{k}{d}\right] \leq \exp \left(\frac{k}{2}(1-\beta+\log \beta)\right)
$$

1. Prove

$$
\operatorname{Pr}\left[\sum_{i=1}^{k} y_{i}^{2} \leq \beta \frac{k}{d} \sum_{i=1}^{d} y_{i}^{2}\right] \leq \frac{(1-2 t k \beta)^{-(d-k) / 2}}{(1-2 t(k \beta-d))^{k / 2}}
$$

for any $t>0$ such that $1-2 t k \beta>0$ and $1-2 t(k \beta-d)>0$. (Hint: Prove, and use, that $\mathbb{E}\left(e^{s X^{2}}\right)=\frac{1}{\sqrt{1-2 s}}$, for $-\infty<s<1 / 2$, where X is standard normal.)
2. Find a suitable t and conclude the proof of the inequality for $\beta<1$.
3. Use the same idea as above to prove the $\beta>1$ case.

MIT OpenCourseWare
http://ocw.mit.edu

18.S096 Topics in Mathematics of Data Science

Fall 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

[^0]: ${ }^{1}$ Meaning that $\mathbb{E} X=0$.

