18.S096: Homework Problem Set 3

Topics in Mathematics of Data Science (Fall 2015)

Afonso S. Bandeira

Due on November 3, 2015

Problem 3.1 Given n i.i.d. non-negative random variables x_1, \ldots, x_n , show that

$$\mathbb{E}\max_{i} x_{i} \lesssim \left(\mathbb{E}\left[x_{1}^{\log n}\right]\right)^{\frac{1}{\log n}}.$$

Problem 3.2 Let $y_1, \ldots, y_n \in \mathbb{R}^d$ be *i.i.d.* random variables such that $\mathbb{E}y_k = 0$ and

 $\mathbb{E}y_k y_k^T = I_{d \times d}.$

Show that, if

$$\frac{\log d}{n} \left(\mathbb{E} \|y_1\|^{2\log n} \right)^{\frac{1}{\log n}} \lesssim 1,$$

then

$$\mathbb{E}\left\|\left(\frac{1}{n}\sum_{k=1}^{n}y_{k}y_{k}^{T}\right)-I_{d\times d}\right\|\lesssim\sqrt{\frac{\log d}{n}}\left(\mathbb{E}\|y_{1}\|^{2\log n}\right)^{\frac{1}{2\log n}}$$

Note that $\|\cdot\|$ denotes spectral norm, and \lesssim means smaller up to constants.

Problem 3.3 Given a centered¹ random symmetric matrix $X \in \mathbb{R}^{d \times d}$, we define

$$\sigma = \sqrt{\|\mathbb{E}X^2\|},$$

and

$$\sigma_* = \max_{v: \|v\|=1} \sqrt{\mathbb{E} \left(v^T X v \right)^2},$$

- 1. Show that $\sigma \geq \sigma_*$.
- 2. If X has independent entries (except for the fact that $X_{ij} = X_{ji}$) such that $X_{ij} \sim \mathcal{N}\left(0, b_{ij}^2\right)$, show that

¹Meaning that $\mathbb{E}X = 0$.

•
$$\sigma^2 = \max_i \sum_{j=1}^n b_{ij}^2$$

• $\sigma_* \le 2 \max_{ij} |b_{ij}|$

Note that $\|\cdot\|$ denotes spectral norm, and in expressions with \mathbb{E} and a power, the power binds first. For example, by $\mathbb{E}X^2$, we mean $\mathbb{E}[X^2]$ and, by $\mathbb{E}(v^T X v)^2$, we mean $\mathbb{E}[(v^T X v)^2]$

Problem 3.4 (Norm concentration of projection) Let y_1, \ldots, y_d be *i.i.d* standard Gaussian random variables and $Y = (y_1, \ldots, y_d)$. Let $g : \mathbb{R}^d \to \mathbb{R}^k$ be the projection into the first k coordinates and $Z = g\left(\frac{Y}{\|Y\|}\right) = \frac{1}{\|Y\|}(y_1, \ldots, y_k)$ and $L = \|Z\|^2$. It is clear that $\mathbb{E}L = \frac{k}{d}$. Prove that L is very concentrated around its mean

- If $\beta < 1$, $\Pr\left[L \le \beta \frac{k}{d}\right] \le \exp\left(\frac{k}{2}(1 - \beta + \log \beta)\right).$
- If $\beta > 1$,

$$\Pr\left[L \ge \beta \frac{k}{d}\right] \le \exp\left(\frac{k}{2}(1 - \beta + \log \beta)\right).$$

1. Prove

$$\Pr\left[\sum_{i=1}^{k} y_i^2 \le \beta \frac{k}{d} \sum_{i=1}^{d} y_i^2\right] \le \frac{(1 - 2tk\beta)^{-(d-k)/2}}{(1 - 2t(k\beta - d))^{k/2}}$$

for any t > 0 such that $1 - 2tk\beta > 0$ and $1 - 2t(k\beta - d) > 0$. (Hint: Prove, and use, that $\mathbb{E}(e^{sX^2}) = \frac{1}{\sqrt{1-2s}}$, for $-\infty < s < 1/2$, where X is standard normal.)

- 2. Find a suitable t and conclude the proof of the inequality for $\beta < 1$.
- 3. Use the same idea as above to prove the $\beta > 1$ case.

18.S096 Topics in Mathematics of Data Science Fall 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.