18.S096: Homework Problem Set 2

Topics in Mathematics of Data Science (Fall 2015)

Afonso S. Bandeira

Due on October 20, 2015

Problem 2.1 Given a graph $G=(V, E, W)$ consider the random walk on V with transition probabilities

$$
M_{i j}=\operatorname{Prob}\{X(t+1)=j \mid X(t)=i\}=\frac{w_{i j}}{\operatorname{deg}(i)}
$$

Partition the vertex set as $V=V_{+} \cup V_{-} \cup V_{*}$. Suppose that every node in V_{*} is connected to at least a node in either V_{+}or V_{-}. Given a node $i \in V$ let $g(i)$ be the probability that a random walker starting at i reaches a node in V_{+}before reaching one in V_{-}, i.e.:

$$
g(i)=\operatorname{Prob}\left\{\inf _{t \geq 0: X(t) \in V_{+}} t<\inf _{t \geq 0: ~} \inf _{(t) \in V_{-}} t \mid X(0)=i\right\} .
$$

Note that if $i \in V_{+}$then $g(i)=1$ and, if $i \in V_{-}$, then $g(i)=0$. What is the value of g in V_{*} ? How would you compute it?

Problem 2.2 For a graph G let $h(G)$ denote its Cheeger constant and $\lambda_{2}\left(\mathcal{L}_{G}\right)$ the second smallest eigenvalue of its normalized graph Laplacian. Recall that Cheeger inequality guarantees that

$$
\frac{1}{2} \lambda_{2}\left(\mathcal{L}_{G}\right) \leq h_{G} \leq \sqrt{2 \lambda_{2}\left(\mathcal{L}_{G}\right)} .
$$

This exercise shows that this inequality is tight (at least up to constants).

1. Construct a family of graphs for which $\lambda_{2}\left(\mathcal{L}_{G}\right) \rightarrow 0$ and for which there exists a constant $C>0$ for which, for every G in the family,

$$
h_{G} \leq C \lambda_{2}\left(\mathcal{L}_{G}\right)
$$

2. Construct a family of graphs for which $\lambda_{2}\left(\mathcal{L}_{G}\right) \rightarrow 0$ and for which there exists a constant $c>0$ for which, for every G in the family

$$
h_{G} \geq c \sqrt{\lambda_{2}\left(\mathcal{L}_{G}\right)}
$$

Problem 2.3 Given a graph G show that the dimension of the nullspace of L_{G} corresponds to the number of connected components of G.

Problem 2.4 Given a connected unweighted graph $G=(V, E)$, its diameter is equal to

$$
\operatorname{diam}(G)=\max _{u, v \in V} \min _{\text {path } p \text { from } u \text { to } v} \text { length of } p .
$$

Show that

$$
\operatorname{diam}(G) \geq \frac{1}{\operatorname{vol}(G) \lambda_{2}\left(\mathcal{L}_{G}\right)}
$$

Problem 2.5 1. Prove the Courant Fisher Theorem: Given a symmetric matrix $A \in \mathbb{R}^{n \times n}$ with eigenvalues $\lambda_{1} \leq \cdots \leq \lambda_{n}$, for $k \leq n$,

$$
\lambda_{k}(A)=\min _{U: \operatorname{dim}(U)=k}\left[\max _{x \in U} \frac{x^{T} A x}{x^{T} x}\right] .
$$

2. Show also that:

$$
\lambda_{2}(A)=\max _{y \in \mathbb{R}^{n}}\left[\min _{x \in \mathbb{R}^{n}: x \perp y} \frac{x^{T} A x}{x^{T} x}\right] .
$$

Problem 2.6 Given a set of points $x_{1}, \ldots, x_{n} \in \mathbb{R}^{p}$ and a partition of them in k clusters S_{1}, \ldots, S_{k} recall the k-means objective

$$
\min _{S_{1}, \ldots, S_{k}} \min _{\mu_{1}, \ldots, \mu_{k}} \sum_{l=1}^{k} \sum_{i \in S_{i}}\left\|x_{i}-\mu_{l}\right\|^{2} .
$$

Show that this is equivalent to

$$
\min _{S_{1}, \ldots, S_{k}} \sum_{l=1}^{k} \frac{1}{\left|S_{l}\right|} \sum_{i, j \in S_{l}}\left\|x_{i}-x_{j}\right\|^{2}
$$

MIT OpenCourseWare
http://ocw.mit.edu

18.S096 Topics in Mathematics of Data Science

Fall 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

