Proof let $\bar{b}=\left\{b_{i} \cdot i<\lambda\right\}$ be an enumeration of B^{\prime}.
let $r(\bar{x}, y)=\operatorname{tp}(\bar{b}, a)$. Let $E\left(y, y^{\prime}\right):=[\exists \bar{x} r(\bar{x}, y) \wedge$

$$
\left.\bar{r}\left[\bar{x}, y^{\prime}\right)\right] \vee y=y^{\prime}
$$

Then E in Typerdeprable equablence relation.
Also $a E a^{\prime} \Leftrightarrow \beta=$
Enumerate all formulas $\varphi\left(x, x^{\prime}\right)+x \neq x^{\prime}$ (ie $T+\forall x \neg \varphi(x, x))$. Enumerate them is $\left\{\varphi_{i}\left(x, x^{\prime}\right): i<\lambda \xi\right.$.

For every $1<\lambda \quad \exists n_{i}<\omega$ st. :

Continued on next page
（Since with ω this is inconsistent，so Let n_{i} be maximal such that it is）

$$
\begin{aligned}
& E\left(y, y^{\prime}\right)=\left(y=y^{\prime}\right) \vee\left(\bigwedge_{i<\lambda} \exists x_{6} \cdots x_{n_{j}} \bigwedge_{j<n_{i}} p\left(x_{j}, y\right) \Lambda\right.
\end{aligned}
$$

Clearly：if 営 $a^{\prime} \neq \operatorname{tp}(a)$ and $B=\left\{b: p\left(b, a^{\prime}\right) \xi\right.$ then aHA．
Now prove converse．
Conversely，assume a $E a^{\prime}$ ．so $a^{\prime} \vDash \operatorname{tp}\left(\varepsilon_{n}\right)$ ．
iou west of poof liter：．

