Proof let
$$\vec{b} = \vec{z} \vec{b}_{i} \cdot i < \vec{\lambda} \vec{z}$$
 be an enumeration of \vec{B} .
let $r(\vec{x}, y) = tp(\vec{b}, a)$. let $E(y, y') := [\vec{z} \vec{x} r(\vec{x}, y)] \wedge r(\vec{x}, y')] \vee y = y'$
Then \vec{E} is hyperdefinable equivalence velation.
Also: $u \in a' \Rightarrow \vec{B} =$
Enumerate all Bernvilas $\varphi(x, v') + x \neq x'$ (i.e.
 $T + \forall x \exists \varphi(x, x)$). Enumerate them as $\vec{z} \cdot \varphi(x, x')$: $i < \lambda \vec{s}$.
For every $i < \lambda$ $\exists h_i < a \ st$:
1. $\exists x_j \notin j < hi \ st$. $\bigwedge{p(x_j, a)} \land \bigwedge{q(x_j, x_k)}$.
 $z \cdot \exists n_i \neq i \ st$. $n_{i+1} = n_{i+1} = n_{i+1}$

Continued on next page

T

F

F

(Since with
$$\omega$$
 this is inconsistent, so let n_i be
 $\max \min such that it is.)$
 $E(y, y_i) = (y = y_i) \vee (\bigwedge_{i < \lambda} \exists x_0 - x_n; \bigwedge_{j < n_i} p(x_j, y_j) \land$
 $p(x_j, y_i) \wedge \bigwedge_{j < k < n_i} \psi_i(x_j, x_k) \nexists \land \psi_i(x_j)$
Clearly: if $\nexists a_i \neq tp(a_i)$ and $B = \nexists b : p(b, a_i) \And$ then
 $a \neq a'$.
Now prove ionverse.
Conversely, assume $a \neq a'$. so $a' \neq tp(a)$.
 iou cost of proof $b \neq cr.$

¥