$$
\alpha=0: \operatorname{su}(a b / a) \geqslant \operatorname{su}(a / A) \geqslant \operatorname{su}(a / A b) .
$$

a limit: By ind hyp. (since x on right-tand-side).

$$
\operatorname{su}(b / A) \geqslant x+1 \text { so } \exists c \text { st. } \text { su }(b / A c) \geqslant \alpha, b \notin \chi_{v a} c \text {. }
$$

WM C $\underset{A b}{\dot{\prime} a}$
\Rightarrow (1) $S U(a / A b)=S U(a / A b c)$

$$
\text { By ind hyp, } \left.\operatorname{su}(a b / A c) \geqslant s u(a / A b i)+\alpha=\operatorname{suc}^{(a / A b}\right)+\alpha \text {. }
$$

(2) $a b \underset{A}{\neq} c=t \cdot c$ since $b \underset{A}{\nsim} c$

$$
\Rightarrow \quad \operatorname{su}(a b / a) \geqslant \operatorname{su}(a b / A c)+1 \geqslant \operatorname{su}(a / a b)+\alpha+1 .
$$

Now other inequality, ne prove by induction.

$$
\forall x \text { if } \operatorname{su}(a b / a) \geqslant x \Rightarrow \operatorname{su}(a / a b) \oplus \operatorname{su}(b / a) \geqslant \alpha \text {. }
$$

Mg Lin $\alpha=0$, limit \checkmark.

Writing out ordinal remarks:
Want $\beta \oplus \gamma \geqslant \alpha+1 \Rightarrow \exists \beta^{\prime} \beta \geqslant \beta^{\prime}+1 \quad \beta^{\prime} \oplus \gamma \geqslant \alpha$ or $\gamma \ldots$ wive $p=\sum \omega^{\alpha i} n_{i} \quad \gamma=\sum \omega^{\alpha_{i}} m_{i} \quad \beta \oplus \gamma=\sum \omega^{\alpha_{i}}\left(m_{i}+n_{i}\right)$ wite $\alpha=\sum \omega^{\alpha i} k_{i}$ $\geqslant \nmid x+1$

Frit: $(\alpha, \beta) \mapsto \alpha(\oplus) \beta$ is minimal st if aklewhereco $(x+1)(1) \beta \geqslant \infty+\beta+1$ and syminetry.

$$
p \oplus \gamma=\sum \omega^{\alpha_{i}}\left(m_{i}+n_{i}\right) \geqslant\left(\sum \omega^{\alpha i} k_{i}\right)+1
$$

Let j be least sit $k_{i g}<m_{i g}+n_{i g}$

If $n_{j}=0 \quad k_{j}<m_{j}$
Let $\gamma^{\prime}=\sum_{i<j} \omega^{\alpha_{i}} m_{i}+\sum_{i \geqslant j} w^{\alpha i} k_{i}$
se $\gamma \geqslant \gamma^{\prime}+1 \quad \& \quad \gamma^{\prime} \oplus \beta \geqslant \alpha$.
Otherwise define $\beta^{\prime}=\sum_{i<j} w^{\alpha_{i}} n_{i}+a^{\alpha j}\left(n_{j}-1\right)+\sum_{i \geqslant j} u^{\alpha_{i}} k_{i}$ So $\beta \geqslant \beta^{\prime}+1 \& \beta^{\prime} \oplus \gamma \geqslant \alpha$.

One more inequality (whose proof is the messiest).
III ("Higher exponent symmetry").
Assume $\operatorname{su}(a / A) \geqslant \operatorname{SU}(a / A b)+\omega^{\alpha} \cdot n$.
(ie very dependent on b).
Then $s \cup(\dot{b} / A) \geqslant S \cup(b / A a)+\omega^{\alpha} \cdot n$.
This property is useful.
Small Clam: Assume $\operatorname{su}(a / B)=\omega^{2}$ and $B \subseteq C \&$ a $\frac{d}{B} \&$ $b \frac{B_{B}}{B}$ st. $b \underset{B}{X} c \Rightarrow a \underset{C}{\downarrow} b$.

Proof Assume $a \neq b$. Then $w^{\alpha}=\operatorname{SU}(a / c) \leqslant \operatorname{SU}(a b / c)$

$$
\leqslant \underset{r_{\alpha}}{\operatorname{sun}(b / b)} \underset{r_{\omega^{\alpha}}}{(b)} \underset{r^{\alpha}}{(b / c)}<\dot{\omega}^{\alpha} .
$$

417. Detn (1) For every two contradicting formulas $\varphi(x, y), \psi(x, y)$
define $R(p(x), \psi, \psi, Q)$ inductively as follows:

- $R(p, \varphi, \psi, 2) \geqslant 0$ if $p(x)$ is consistent.
- $R(p, \varphi, \psi, 2) \geqslant n+1$ if $\exists b$ se $R(p(x) \wedge \varphi(x, b), \psi, \psi, z)$ and $K(p(x) \wedge \psi(x, b), \varphi, \ldots) \geqslant n$ 。
(2) The pair (φ, ψ) is stable if $R\left(x_{x^{\top}=x}^{T}, \varphi, \psi, 2\right)<\infty$.
(3) φ is stable if $\left(\varphi, \psi^{\prime}\right)$ is stable $\forall \psi$ contradicting φ.
T is stable if all formulas are.

A φ-definition for $p($ over $A)$ is a partial type IA $d_{\varphi} p(y)$
satisfying:
- $\left|d_{\varphi p}\right| \leqslant|T|$.
- $\forall b \in A$ (af the length $C f(y), \varphi(x, b) \in p$ iff $F d_{\Psi p}(b)$.
(2) A definition of $p(x)$ is a set $\left.\sum d y p: \varphi(x, y)\right\}$ such that each $d_{4} p$ is a y-def for p.

$\forall B$ the type $o_{0}=\xi \varphi(x, b): \varphi(x, y), b \in B$ st. $\left.\vDash d_{p}(b)\right\}$ is a complete consistent type.
(4) P is (well) definable if it hes a (good) detrition.
(1)

Now: If $\varphi(x, b) \in p$ then $x(x, c) \wedge \varphi(x, b) \in p$
$\Rightarrow p_{\psi}(b)$ is true.
On the other hand if $\psi(x, b) \in p$ then $x(x, c) \wedge \psi(x, b) \in p$
$\Rightarrow P_{\psi}(b)$ is false $(a w R(x, y, 4,2) \geqslant n+1)$
Let $d_{\psi} p(y)=\left\{\rho_{\psi^{\prime}}(y): \psi\right.$ contradicting $\left.\psi\right\}$.
Thin $\left|d_{\varphi} p\right| \leq|T|$ \& $d_{\varphi} p(y)$ is over A.
If $\varphi(x, b) \in p$ then $F d_{\varphi} p(b)$ from (a).
If $\varphi(x, b) \notin p$ then since p is complete
$\exists y^{\prime}$ (contradicting y st $\psi(x, b) \in P$.
so $\not \neq p_{\psi}(b) \Rightarrow \not \approx d_{\varphi} p(b)$.
(2) \Rightarrow (3): count possible definitions.
(3) \Rightarrow (4): eg take $\lambda=2^{|T|}$ so $(\lambda+|T|)^{T T}=\lambda$.
(4) \Rightarrow (1): Assume 7(1) and let λ be any cardinal.

Let k be lust st. $2^{k}>\lambda$. se $k \leqslant \lambda$
So $\quad 2^{<i C}=\sum_{\mu<K} a^{\mu} \leqslant \lambda \cdot \lambda=\lambda$.
so bi y assumption we have ψ, ψ (contradictory st $R(\underset{N}{\substack{i=2} x, \varphi, \psi, 2) ;}$

So by compactness we find $\left\{a_{\tau}: \tau \in 2^{k}\right\}$ and $\left\{b_{\sigma} \cdot \sigma \in 2^{<k} \xi\right.$ st. $\forall \tau \in 2^{i}, \alpha<k$ we have if $\tau(\alpha)=0$ then $\varphi\left(a_{z},\left.b_{\tau}\right|_{\alpha}\right)$
if $\tau(\alpha)=1$ them $\psi\left(a_{\tau},\left.b_{\tau}\right|_{\infty}\right)$.
Let $B=\left\{b_{\sigma}\right\}$ then $|B|=x^{<k} \leqslant \lambda$
But we found $2^{C}>\lambda$ contridictoun φ-types over $B . \square$ Corollary TFAE:
(1) T stable

(3) $\forall A,|S(A)| \leq\left(i A|+|T|)^{|T|}\right.$
(4) J λ st. $|A| \leqslant \lambda \Rightarrow|s(H)| \leq \lambda$.

Sketchy proof (i) $\Rightarrow(2) \sqrt{ } \Rightarrow(3)$ notice, $\left[\left(\left|j+|+|T|)^{i T i}\right]^{|T|}\right.\right.$ $=(|A|+|T|)^{|T|}$.

Deft let $A \subseteq B, \quad P \in S(B)$. Then p is non-splitting over A if $\forall \varphi(x, y) \& b, c \in B$ of lengthy, than if $b \equiv c$ then $\varphi(x, b) \in p$ if $\varphi(x, c) \in p$.

In othervords, if $a \not F p$ and $b \equiv \frac{\equiv}{A} c(b, c \in B)$ chen $b \overline{=} c$.
Doth let $K>|T|$. A set $M \subseteq U$ is K-saturated if $\forall A \leq H \quad|A|<K$, $\forall p \in S(A)$, P is realised in M

Font $\forall A \exists M \geq A$ sit. \mathcal{M} is $|T|^{t}$-sationted.
lumina let it be $|T|$ saturated, $p \in S(M)$ definable.
Then (i) p has a uniquededirition sup to equivalence)
(ii) the unique cletinution is good.
$=\forall B$, lat $\left.p\right|_{B}$ be the type resulting from Other application up the definition to B.
(iii). $\forall B \geq M, p / B$ is a nensplitting extension of p.

Proof (i) Assume $\left\{d_{\varphi p} p\right\}$ and $\left\{d_{\varphi}^{\prime} p\right\}$ ane bath definitions \& not aquiment.

So $\exists \varphi$ st. $d_{\varphi p} \neq d_{\varphi} p$.
ie $J b(\operatorname{not}$ in $M)$ st say $\vDash d_{\varphi p}(b)=$ $\not \subset d_{q p}^{\varphi p}(b)$

So $\operatorname{tp}(b / M)$ contradicts avar $d_{p}{ }^{\prime} p(y)$.
$\Rightarrow \exists c \in M \& X(y, z)$ st. $F X(b, c)$ and $x(y, c)$ contradicts dýf(py).
ut $A=$ set of parameters used in depp, them

$$
H \leq \mu, \quad|A| \leq|T|
$$

By $|T|^{t}$-saturn. tron $\exists b^{\prime} \in M$ st. $b^{\prime} \frac{\overline{A_{c}}}{} b$.
Then $F d_{y p} p\left(b^{\prime}\right)$ \& $\neq d y^{\prime} p\left(b^{\prime}\right)\left(\right.$ because $\left.x\left(b^{\prime}, c\right)\right)$.
So dup, dup de not define the same y-type in A.
(ii) Let B bi any set.

We want to prove $\left.p\right|_{B}$ is a complete consitenttype.
Let A be, is above, the set of parameters.
consistent: if not, there are $\left.\hat{\varphi}_{i}\left(x_{i}, L_{i}\right) \in p\right|_{B} i<n$ st. $\Delta_{y_{i}}\left(x, b_{i}\right)$ is inconsistent.
By saturation, find $\overline{b^{\prime}} \frac{\equiv}{A} \bar{b}, \overline{b^{i}} \in \mu$.
Then $\psi_{i}\left(x, b_{i}^{\prime}\right) \in p \forall i$ and $\lambda \psi_{i}\left(x, b_{i}^{\prime}\right)$ is inconsistent
complete: Assume not. Then $\exists b \in B$ and $\varphi(x, y)$ st. $\left.\varphi(x, b) \notin p\right|_{B}$ and $\forall \psi$ contradicting $\varphi,\left.\psi(x, b) \notin p\right|_{B}$. find $b^{\prime} \equiv b$ in M....etc...
(iii) not enough time, so exercise!

