
MIT 18.996: Topic in TCS: Internet Research Problems Spring 2002

Lecture 7 — March 20, 2002
Lecturer: Brian Dean Scribe: John Kogel, Ben Leong

Global Load Balancing

In today’s lecture, we discuss global load balancing problems and formulation of such problems as
instances of network flow problems and stable marriage problems.

7.1 Introduction/Motivation

��
��
��
��

���
���
���
���

���
���
���

���
���
���

���
���
���
���

��
��
��
��

��
��
��
��

���
���
���

���
���
���

��
��
��

��
��
��

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���
���
���
���
���

Client

Server

Data Center

Figure 7.1. Simple model of the Internet.

In our model, the Internet consists of a collection of clients, servers and data centers. A data
center is simply a group of servers all situated at the same place. Our goal is to map the clients
to the servers (or data centers) given a set of constraints. In our model, a client can be serviced
by any server (this is in contrast to the client-cache model present the previous week where data
is available only on selected servers. Our goal is to ensure that locality is enforced and clients are
served by servers which are located near them.

7.1.1 Objectives

In making assignments, the following are the objectives that we would like to meet:

1. Assign clients to “close” servers. We can define distance according to various measures (i.e.,
ping latency or AS hops).

2. Map clients to servers with low utilization. As shown in Figure 7.2, we will consider 2 ways
of modeling the cost of utilization. In one model, there is no cost until the load on a server

7-1

MIT 18.996 Lecture 7 — March 20, 2002 Spring 2002

reaches a hard capacity����, and thereafter the cost is infinite; in the second model, cost
increases as a (typically convex) function of utilization.

3. Minimize the bandwidth cost. The cost of bandwidth is typically a concave function with
respect to bandwidth utilization as shown in Figure 7.3.

We note that objectives 1 and 2 are desirable from the perspective of the clients/users while ob-
jective 3 is desirable from the perspective of the servers/providers. Also, the first two objectives
usuallly act in opposition to the third. For the purposes of this lecture, we will focus on objectives
1 and 2.

1

2

+oo

Cmax

Cost

Load

Figure 7.2. Possible cost models.

Cost

Bandwidth Utilization

Figure 7.3. Graph of cost versus bandwidth.

7.1.2 What Happens in Practice

We’ll focus in this talk on ways to model and solve abstract load balancing problems; however,
actual load balancing systems typically involve much more complex machinery than just a core
algorithm. In practice, our load balancing system may need to do quite a bit of work just to
maintain the problem instance (client information, server information, and locality information
between the two) which is periodically fed to the load balancing algorithm. In practice, the number
of clients is too large for us to assign them individually to servers, so we usually aggregate clients
in some fashion (i.e., by network or by IP address). Servers need to monitored to make sure that if
a server crashes, we remove it from the problem instance. Finally, one must somehow determine
and maintain a measure of locality (e.g. AS hops) between clients and servers.

Our load balancing algorithm will periodically re-compute assignments from clients to servers,
which then need to be published (e.g., using DNS). In terms of timescale, any time a client is
reassigned to a new server it takes some time for traffic from that client to migrate fully to the new
server, especially for long connections such as streams. So we are looking at a system that will
probably be updating its assignments every few seconds or few minutes.

7.2 Network Flows

In this section we describe how to formulate increasingly-sophisticated variants of the client-server
assignment problem each as network flow problems.

7-2

MIT 18.996 Lecture 7 — March 20, 2002 Spring 2002

7.2.1 Finding a Feasible Assignment

We start with the following basic formulation of the problem: we have� clients (which are actually
aggregates of individual clients as described above) and� servers. Each client� has an associated
��������� and each server� has an associated	�
�	������. Each client can be mapped to a
subset of the servers (presumably those close to it). We can represent this problem instance using
a directed bipartite graph as shown in Figure 7.4. We allow the demand for a client to be split
between various servers, and we want to determine if a feasible assignment exists which satisfies
the client demands and respects the server capacities.

demand(i)
i

j
capacity(j)

n clients m servers

Figure 7.4. Basic model.

si

jt

i

n clients

s

j

t

u = demand(i)

u = capacity(j)

high capacity

m servers

Figure 7.5. As a max-flow problem.

To solve this problem, we transform it into an equivalent max-flow problem by adding a source
node,, and a sink node,�. We also add an edge between and all the clients and also an edge
between all the servers and�. The capacities for the source-client edges are set as��������� while
that for the server-sink edges are set as	�
�	������. A feasible assignment exists (given by the
flows on the interior edges) only if the max-� flow saturates all of the edges leaving the source.

The well-known max-flow problem is defined as follows: Given a directed graph� � �����,
source and sink nodes and�, and non-negative capacities��� for all edges��� �� � �, find the
maximum flow� � ���� one may send from the source to the sink. As a mathematical program,

Maximize
�

���������

���

� nodes� � � ��� �� �
�

� ��� �
�

� ��� � � (Flow Conservation)

� edges��� �� � � � � � ��� � ��� (Lower and Upper Capacities)

The max-flow problem has been extremely well-studied and many efficient solution algorithms
exist for its solution.

7.2.2 Minimizing Maximum Utilization

We next consider an extension of our problem in which we wish to minimize the maximum uti-
lization among the servers. To do so, we set the capacity of the edge joining each server� to the
sink as�	�
�	������, as shown in Figure 7.6. We now want to minimize� such that there exists a

7-3

MIT 18.996 Lecture 7 — March 20, 2002 Spring 2002

max flow saturating all of the edges leaving the source. This turns out to be a well studied problem
called theparametric max-flow problem. Interesting note: algorithms exist which can solve this
type of parametric max flow problem in essentially the same amount of time as a standard max
flow problem (this is a result of Gallo, Grigoriadis, and Tarjan).

si

jt

i

n clients

s

j

t

u = demand(i)

high capacity

m servers

u = capacity(j)λ

Figure 7.6. Minimizing Max Utilization.

jt

zero cost

ij

i

n clients m servers

j

t

high capacity

u = capacity(j)

cost c

Figure 7.7. Adding Mapping Costs.

7.2.3 Adding a Cost to the Mapping Between Clients and Servers

Next, we add a cost	�� for each connection between the client� and the server� as shown in
Figure 7.7 and attempt to find a minimal-cost assignment of the demands. The problem now
becomes a min-cost flow problem:

Minimize
�

�������

	�����

� nodes� � � �
�

� ��� �
�

� ��� � ��

� edges��� �� � � � � � ��� � ���

We assign to each client�, �� � ���������, to each server�, �� � �, and to�, �	 � �
�

� ���������.
The min-cost flow problem is also well-studied and efficiently solvable.

7.2.4 Replacing Capacity with a Cost Function

All of the previous formulations adhere to our first model of utilization cost (Figure 7.2) in which
utilization of a server is “free” up until the server’s load reaches some hard capacity limit. We now
consider the second model of utilization cost, in which we replace the capacities,	�
�	������, with
load-dependent cost functions as shown in Figure 7.8. This changes only the objective function of
our min-cost flow problem:

Minimize
�

�������

	�������

� nodes� � � �
�

� ��� �
�

� ��� � ��

� edges��� �� � � � � � ��� � ���

7-4

MIT 18.996 Lecture 7 — March 20, 2002 Spring 2002

The server-sink edges may continue to have upper capacities��	, although this is no longer neces-
sary as our cost functions can express an upper capacity by jumping to infinity when load reaches
a certain level. Also, by adjusting the costs associated with the server-sink edges versus the costs
associated with the client-server edges, we can select which objective we wish to emphasize more:
mapping with good locality or achieving low utilization.

Assuming the cost functions are all convex (as is typically the case), the entire objective func-
tion will be convex, so we are minimizing a convex function over a convex polyhedral set of
feasible solutions; such a problem still lies within the realm of “nice” optimization problems.
Moreover, if we approximate the convex cost functions as piecewise linear functions, we can re-
duce this problem back to the simpler previous (linear) min-cost flow problem. To do so, we
replace each server-sink link with several parallel links, each representing one linear piece of the
piecewise linear cost function as shown in Figure 7.9.

jt jt(convex) cost c (x)

ijij

i

n clients m servers

t

j

high capacity

high capacity
(linear) cost c x

Figure 7.8. Replacing capacities with costs.

1
2

1
4

1
2

1
2

3
4

1
2

1
4

1
4

Server t

Load

Cost

 A

 A

 A

 , A

 1

 ,A

 ,2A
(Capacity, Cost)

Figure 7.9. Piecewise linear approximation.

There are no known good techniques for solving such problems with non-convex cost functions;
moreover, it was shown in a previous lecture that such problems with concave cost functions are
NP-Hard and also very difficult to approximate.

7.3 Advanced Topics for Network Flows

We now proceed to discuss some interesting research topics related to the above network flow
problems.

7.3.1 Unsplittable Flows

For the unsplittable flow problem, we assume for a given instance of our basic assignment problem
with costs (Figure 7.7) that a feasible fractional assignment exists. The question that we would
like to ask is whether an assignment exists for which the demand for each client cannot be split
between servers and is hence satisfied by only one server. The approach that we will take to solve

7-5

MIT 18.996 Lecture 7 — March 20, 2002 Spring 2002

this problem is to take the fractional solution and “round” it to give us an unsplittable solution with
no worse cost, allowing the capacity constraints to be slightly violated in the process (we shall
refer to the excess capacity as “congestion”). Congestion may be defined two different ways: (i)
the additive amount we increase capacity, or (ii) the multiplicative factor by which we must scale
capacity. The problem then becomes that of find the unsplit assignment with minimum congestion,
i.e. that minimizes the maximum congestion experienced over all edges, assuming that a feasible
fractional assignment initially exists.

There is a lower bound for this problem which states that in the worst case, one experiences
congestion of at least���� � ���� ���������. This is ‘additive’ congestion, as opposed to ‘mul-
tiplicative’ congestion. The example given in Figure 7.10 satisfies this bound. In this example,
we’ve reversed the location of the clients and servers, as is often done with unsplitable flow prob-
lems, since we now want to route flow on disjoint paths from the source (which was formerly the
sink) to each of the clients. Here, the total demand is equal to total capacity, and a feasible frac-
tional assignment exists. However, because the demand of each client is�

���
but each server has

only capacity	, each server can satisfy only one client integrally without experiencing congestion.
Since there is one client more than the number of servers, one of the servers will have to service 2
clients in an unsplit solution, and the edge linking the source to that server will be congested by an
additive amount which gets arbitrarily close to���� as� gets large.

d 1

d j

m
m+1

=

m
m+1

=

m
m+1

=

m servers

1

i

s
bipartite graph

complete
1

1

1

m+1 clients

dm+1

Figure 7.10. Example which satisfies lower bound.

It can be shown that in the bipartite case, there exist simple polynomial-time approximation algo-
rithms which achieve an additive congestion of����. It is an open question as to when we can
meet this bound without the bipartite constraint.

7.3.2 Vector (Multi-resource) Load Balancing

The vector load balancing problem is formulated by generalizing the demand and capacity func-
tions from scalars to vectors. An example is given in Figure 7.11. Clearly a problem that allows
for fractional assignment can be solved as a linear program by adding more constraints. The in-
teresting question is thus whether there is a feasible integral assignment for a given problem. We
know that such a problem is NP-Complete, since it is NP-Complete for scalars (it’s the unsplittable
flow problem). It might be interesting to know if the problem can be solved more efficiently than

7-6

MIT 18.996 Lecture 7 — March 20, 2002 Spring 2002

with linear programming (pointed out by Bobby). It might also be interesting to see if any results
for the unsplittable flow problem generalize to the vector problem.

ij

bandwidth
CPU time

disk
memory

=CPU time
disk

memory

=
bandwidth

n clients m servers

i

jdemand(i) capacity(j)

ji

cost c

Figure 7.11. An example of a vector load balancing problem

7.3.3 Unknown Demand

Oftentimes, we know the number of requests made by a client, but we do not know beforehand the
actual load which will be imposed on the servers by the requests. Thus, we may be interested to
figure out how we can do load assignment without full knowledge of the demand.

One simple approach is to derive a scaling factor based on the total system-wide load and
requests measured in some historical interval of time: � total load

total # of requests. We then estimate

the demand for each client based on the number of requests on the assumption that the ratio

is a constant across all clients. Although this approach seems to provide us with a reasonable
approximation, the assumption that the ratio is a constant across all clients is questionable. In
particular, if we consider the aggregation of clients by geographic location, then due to different
time zones, it is clear that the nature of the activities of different clients would be different for
different time zone (i.e. clients in areas where it is nighttime may have slow dialup access while
those in areas where it is daytime may be using high speed Internet access in their offices). The
challenge is thus to come up with a scheme that can handle unknown demand without assuming
that is system-wide constant.

The mapping through DNS is primarily responsible for this problem, since the client requests
can be identified with IP address of the client’s DNS server, but the load induced on servers is
identified with the actual IP address of the client (not the client’s DNS server).

7.3.4 Dynamic Stability

Clearly, the demands of clients are not constant, but they change in time. Hence, we want an algo-
rithm that will not make changes in assignment if there are only small changes in the demand. We
would like to have persistent mappings because this is required in caching and state preservation.
For example, it would be very annoying for a user if his shopping cart gets lost frequently because
his browser is directed to another server. This is also to make the system immune to dynamic
instability and oscillations. One simple approach for this problem is to slightly increase the cost of
adjacent links once a stable solution is found for a given link.

7-7

MIT 18.996 Lecture 7 — March 20, 2002 Spring 2002

7.4 Stable Marriage Techniques

In the second half of this talk, we discuss methods for formulating and solving load balancing
problems using “stable marriage” techniques. In the basic stable marriage problem, we have�

men and� women, which we can model as nodes in a bipartite graph. Associated with each man
is a preference list of all the women and associated with each woman is a preference list of all the
men. We then compute a “marriage” between the men and women, which is nothing more than a
matching in our bipartite graph.

m1, m3, m2

m2, m1, m3

w1, w3, w2

w3, w1, w2

w3, w2, w1 m1, m2, m3

n men n women

Figure 7.12. A stable marriage.

Given some marriage, we call a man-woman couple����� a rogue couple if they are not paired
together but both of them prefer each-other to their currently-assigned mates. A marriage is said
to bestable if it has no rogue couples, andunstable otherwise.

7.4.1 Gale-Shapley Algorithm

Stable marriages are typically computed using the well-knownGale-Shapley algorithm. The al-
gorithm is actually quite simple: each man proceeds through his preference list, starting from his
preferred mate, and he proposes to each of the women on the list in sequence until he is accepted.
Each woman simply waits and accepts the best proposal issued to her so far. If she is currently
engaged to a man� and then receives a proposal for a more favorable man, she will drop� and
accept the new proposal, in which case� will simply continue down his preference list until he
is again accepted. The algorithm is actually completely symmetric, in that either the men or the
women may do the proposing, but for simplicity we’ll assume here that the men do the proposing.
More precisely, the algorithm repeats the following operations until all men and women are paired:

	 Find an un-paired man�

	 A proposal is issued by� to the next candidate on his list,�

	 If � is more preferable to� than her currently-assigned mate (if any), then she accepts�

and drops her currently-assigned mate (if any).

This algorithm runs in time����� in the worst case, since we consider at most once each entry in
each man’s preference list, and spend��	� time per entry.

Theorem 7.1. At the end of the Gale-Shapley algorithm, everyone is engaged.

7-8

MIT 18.996 Lecture 7 — March 20, 2002 Spring 2002

Proof: Note that the number of engaged men at the end will be equal to the number of engaged
women at the end. It could not be the case that there remains an un-paired couple�����, since at
some point� would have proposed to�, and she would have accepted. �

Theorem 7.2. The solution obtained by the Gale-Shapley Algorithm is a stable matching.

Proof: Assume that the final matching is not stable, i.e. that there exists parings���� ��� and
���� ��� but ���� ��� is a rogue couple. Since�� prefers�� to ��, �� would have proposed
to �� first, who must have rejected him, so��’s current mate must be preferred to��. This is a
contradiction, since�� is higher than�� in ��’s preference list. Hence, the matching must be
stable. �

A stable pair ����� is a pair which is matched in some stable marriage. If����� is a stable pair,
we say that� is astable partner of �.

Theorem 7.3. The outcome of the Gale-Shapley Algorithm is a “man-optimal” assignment. That
is, each man is paired with his most-preferred stable partner.

Proof: Suppose not. Consider some execution order and consider the first point in time when a
stable pair,���� ���, is rejected.

..., w2, ..., w1, ...

w1

..., w2, ..., w3, ...

w3

w2m2

..., m2, ..., m1, ...

m1

Stable

First rejection
of a stable pair

pair

Another
stable pair

This rejection can either occur if�� is already engaged to a preferred man (��), or if �� comes
along and proposes to�� while she’s engaged to��. Since we’re presuming that���� ��� is a
stable pair, there is some stable matching� in which �� and�� are paired together – let�� be
the woman with whom�� is paired in� , meaning that���� ��� is also a stable pair. It cannot be
the case that�� is higher than�� on��’s preference list, as that would imply that�� would have
already proposed to�� and been rejected, and we are assuming that��’s rejection by�� is the
first rejection of a stable partner so far. Thus�� appears before�� on ��’s preference list. This
means that���� ��� is a rogue couple in� , which contradicts the stability of� . �

The preceding theorem tells us that remarkably, the order of the proposals during the algorithm
is irrelevant. The algorithm always arrives at the same stable matching, even though there is not
necessarily a unique stable matching.

Using a similar line of reasoning, we can show that the matching computed by the Gale-Shapley
algorithm is also “woman-pessimal”, in the every woman ends up assigned to her least-preferred

7-9

MIT 18.996 Lecture 7 — March 20, 2002 Spring 2002

stable partner. Remembering the symmetry of the problem, however, one should note that if the
women were to do the proposing, they would receive an optimal assigment while the men would
receive a pessimal assignment. Some researchers have attempted to address the question of com-
puting stable marriages which are fair to both parties.

7.4.2 Truncating the Preference Lists

In order to model the load balancing problem using stable marriages, we need to consider a few
extensions to the basic stable marriage problem above. First, we consider a class of problems where
we truncate the preference lists of the men and/or, since for large load balancing problems, we shall
see that maintaining complete preference lists may lead to impractical storage requirements. For
the purposes of determining whom to reject, women can consider the men not on their preference
lists as being arbitrarily-ordered at the bottom of their preference lists. We now redefine����� as
a rogue couple if:

1. Both� and� are on each other’s preference lists,

2. � is either unassigned or prefers� to his current mate, and

3. � is either unassigned or prefers� to her current mate

The Gale-Shapley algorithm runs essentially the same on problem instances with truncated prefer-
ence lists. The outcome will be a stable assignment (i.e. there will be no rogue couples, as defined
above), although it is possible that some men and women may end up unassigned. The following
theorem then holds.

Theorem 7.4. Applying the Gale-Shapley Algorithm with truncated preference lists still gives a
stable assignment. Furthermore, each man who ends up assigned (unassigned) will be assigned
(unassigned) ineverystable assignment, and each assigned (unassigned) woman will be end up
being assigned (unassigned) ineverystable assignment.

Proof of this theorem and the remaining theorems is omitted. For a complete treatment of these
topics, refer to the book “The Stable Marriage Problem” by Gusfield and Irving.

7.4.3 Different Numbers of Men and Women

Next, we can consider a class of problems where the numbers of men and women are not the same
but the men and women all have complete preference lists. The Gale-Shapley algorithm still works
in this setting, and still computes a stable matching with some nice properties.

Theorem 7.5. If there are fewer men than women, and everyone has a complete preference list,
the Gale-Shapley algorithm computes a stable matching which is still “man-optimal” and “woman-
possible”. Moreover, the men will all be assigned, and the women will be partitioned into 2 sets:
(i) those who are always assigned in every stable matching, and (ii) those who are never assigned
in any stable matching. If there are more men than women, then the women will all be assigned
and the men will undergo a partition into 2 sets.

7-10

MIT 18.996 Lecture 7 — March 20, 2002 Spring 2002

Theorem 7.6. In the event that there are different numbers of men and women and that preference
lists are incomplete, there will be a partition into 2 sets induced in both the men and in the women.
Members of one set will be assigned in every stable matching, and members in the other set will
never be assigned in any stable matching.

7.4.4 Many-to-One Assignments: Adding Capacities

To avoid any awkward situations going forward, we will alter our discussion to talk about assigning
medical students to hospitals (this was actually one of the original applications of stable marriage
techniques). The difference here is that hospitals can accept more than one medical student; to
each hospital�� we assign an integral capacity��.

..., H , ...j

Capacity Cj

i..., S , ...

Si

jH

Hospitals

identical preference lists
 C nodes, all withj

Medical Students

Figure 7.13. Assigning medical students to hospitals (with capacities).

This generalization of the stable marriage problem is easy to accomodate if we simply split every
hospital node�� into �� nodes with unit capacity, all with equivalent preference lists. This trans-
forms the problem into an uncapacitated stable marriage problem, which we can solve using the
Gale-Shapely algorithm as described above.

One should note that it is not necessary to explicitly perform this transformation. All we need
to do is maintain, for each hospital, a list of medical students currently assigned to it. If the hospital
ever receives a proposal when it has already reached capacity, it simply rejects the least-preferred
of these students (including possibly the proposing student). If the algorithm stores these lists
of assigned students in heaps, then we will only spend��
���� time per proposal (here,� is the
number of students), for a total running time which is���
����, where� is the sum of the lengths
of all of the medical students’ preference lists (since� is an upper bound on the total number of
proposals issued).

7-11

MIT 18.996 Lecture 7 — March 20, 2002 Spring 2002

7.4.5 Dealing with Demands and Capacities

We now take the final steps necessary to model our load balancing problem. Consider the problem
of assigning clients to servers, where each server has an integral capacity and each client has an
integral demand. The clients rank the servers according to locality, and the servers must choose
some method of ranking the clients – one potential way to do this is to have a server� prefer client
� to client � if client B will suffer less from a rejection (i.e., client B may have other choices
in its preference list which are nearly as good as�). We reduce the problem to an uncapacitated
problem by splitting each client with demand� into � unit-sized nodes with equal preference
lists, and by (implicitly) splitting each server with capacity� into � unit-sized nodes with equal
preference lists. To avoid utilizing excessive space, we typically truncate each client’s preference
list to contain only its first few preferred servers. We may not need to explicitly generate and store
preference lists for the servers at all, for example if we base these on the client preference lists as
discussed above.

The Gale-Shapley Algorithm gives us a stable assignment, but it may be “fractional” in the
sense that a client may have some units of its demand assigned to different servers. It is also
possible that if there is not enough capacity, there may not be a matching which assigns all of the
demand. However, due to the stable marriage properties previously discussed, we at least know
that if a client has only an� fraction of its demand satisfied by our stable marriage solution, then
it will have exactly an� fraction of its demand satisfied inevery stable matching. Similarly, we
utilize the same amount of capacity in each server in every stable marriage solution.

7.4.6 Improving the Running Time

Recall that when we added capacities to the servers, we could implicitly blow up server nodes
into clouds of unit nodes without affecting running time much. This is not quite possible with the
client nodes, however, so the running time of our algorithm will now be roughly linear in the total
demand over all clients, which could be quite inefficient.

To reduce this running time, we make requests in batches. That is, an aggregate client node
will propose to a server with a block of several units of demand all at once. If the server can accept
all of these, then we continue to treat the client node as an aggregate quantity. If the server accepts
only part of the request, then we split the client node into two smaller aggregate nodes, one of
which is assigned to the server and the other of which continues to issue aggregate proposals.

The issuance of aggregate proposals by itself does not improve our worst-case running time,
so we use the following trick: a client node will only issue an aggregate request if at least some
 fraction of its demand remains unassigned. If this is the case, there will be��

�
� total requests,

and one may conclude after a bit of analysis that this yields a total running time of��

�

����. The

algorithm may terminate with some demand unassigned, but at most an fraction of every client’s
demand will remain unassigned, which is perhaps a reasonable trade-off for a running time which
is nearly linear in the sizes of the clients’ preference lists.

7-12

