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1. Introduction 

The “Plateau’s Problem” is the problem of finding a surface with minimal area among all 

surfaces which have the same prescribed boundary. Let x be a solution to Plateau’s problem 
tfor a closed curve Γ and let xt be a variation of x such that x0 = x and x has the boundary 

Γ for all t. If A(t) is the area of x(t) bounded by Γ then A�(0) = 0 since t = 0 is a minimum 

for A. A surface is minimal if it is a critical point of the area function for each closed curve 

that it spans. A piece of a minimal surface bounded by a closed curve (or a family of closed 

curves) is called stable if the surface is a minimum for the area function associated with that 

curve. It is called unstable if it is a local maximum. 

It is readily seen that minimal surfaces don’t necessarily minimize area. Therefore it is 

natural to ask when a minimal surface is area minimizing. This is in general a difficult 

problem since it is hard to analyze the area function. Even analyzing the area function and 

finding its global minimum does not suffice if the boundary is a family of closed curves(see 

4.2). In this paper we describe Schwarz’s theorem which gives sufficient conditions for a 

minimal surface to be unstable thus not area minimizing. Schwarz’s theorem states that 

if the smallest eigenvalue λ of the laplacian of the Gaussian image of a piece of a minimal 

surface is greater than two then the piece is unstable. A result due to J. L. Barbosa, M. do 

Carmo in the converse direction states that if the mentioned eigenvalue is less than two then 

the piece is stable. Notice however that even these results together leave the case λ = 2 open. 

Section 2 introduces the notation that we use and also provides the background information 

needed. Section 3 gives an elementary proof to a corollary of Schwarz’s theorem. Section 4 

presents a nice application of this corollary and also describes a class of examples to which this 

corollary does not apply. Section 5 gives an outline of the proof of Schwarz’s theorem. This 

paper is mainly based on Michael Oprea’s book The Mathematics of Soap Films: Explorations 

with Maple, 2000 and the paper On the Size of a Stable Minimal Surface in R3 .,J. L. Barbosa, 

M. do Carmo (1974). 
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2. Definitions and Background 

2.1. Definitions. We introduce the fundamental definitions and notations that are used to 

study Minimal Surfaces Theory. Let U be a nonempty, open, connected and simply connected 

set in the plane (such a set is called a domain). Let x : U R3 be a regular parametrized → 

surface. Throughout this paper we denote the coefficients of the first fundamental form by 

E = xu, xu , F = xu, xv , G = xv , xv , 

the Gauss map by 
xu × xv

N = , 
xu × xv| |

the coefficients of the second fundamental form by 

e = u, xu , f = u, xv , g = v , xv .−�N � −�N � −�N �
Then the Gaussian curvature is 

eg − f 2 

K = 
EG− F 2 

, 

and the mean curvature is 
eG− 2fF + gE 

H = . 
2(EG− F 2) 

x is said to be a minimal surface if H ≡ 0, or equivalently, 

eG− 2fF + gE = 0. 

A reparametrization of x is a differentiable function y : V R3 so that y = φ x for some → ◦ 

diffeomorphism φ : V U . x is said to have isothermal parameters if E = G and F = 0. → 

Note that with isothermal parameters, the minimal surface equation reduces to e+ g = 0 and 
e2+f 2 

the Gaussian curvature becomes K = 
E2 .− 

2.2. Theorems. We introduce the Weierstrass Enneper representations of minimal surfaces 

and explain its relationship to the Gauss map. 

Theorem 2.3. A minimal surface has an isothermal parametrization 

The development of the minimal surface equation and the proof of 2.3 can be found in 

[Osserman] Let x be a minimal surface with isothermal parameters. It’s a well known fact 

that 

(2.3.1) Δx = (2EH)N 

(See [Oprea] or [Osserman]) where Δ and H are the laplacian and the mean curvature of x. 

Since x is minimal H = 0 therefore x is harmonic. Let x(u, v) = (x1(u, v), x2(u, v), x3(u, v)) 
iand define φi = x − ixi for i = 1, 2, 3. φi is holomorphic since each xi is harmonic. Letu v 
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φ = (φ1, φ2, φ3) A simple computation shows: 

(2.3.2) (φ1)2 + (φ2)2 + (φ3)2 = E − 2iF − G = 0 

2 2(2.3.3) |φ| 2 = φ1 + φ2 + φ3 2 = 2E| | | | | | 
Following theorem is a corrollary of 2.3.1, 2.3.2 and 2.3.3. 

iTheorem 2.4. Let x : U → R3 be a regular surface. Let φi = x − ixi and suppose u v 

(φ1)2 + (φ2)2 + (φ3)2 = 0. Then x is minimal if and only if each φi is holomorphic. 

It is straightforward to check that if φ is a holomorphic function satisfying 2.3.2 then 

i x = Re[

� 
φidz], i = 1, 2, 3 

defines a minimal surface. So φ provides enough information for us to determine the surface. 

This observation gives us a recipe to construct minimal surfaces: find a holomorphic φ sat

isfying 2.3.2 then integrate to obtain the surface. A nice way to construct such a φ is the 

following: 

1φ1 = f (1 − g2), φ2 = i f (1 + g2), φ3 = f g 
2 2 

where f is holomorphic g is meromorphic and f g2 is holomorphic. On the other hand given φ 
φ3 

one can set f = φ1 − iφ2 and g = 
φ1−iφ2 so that the above equations are satisfied. Therefore 

we have the following theorem: 

Theorem 2.5. (Weierstrass Enneper Representation I)If f is holomorphic, g is mero

morphic and f g2 is holomorphic on a domain U then a minimal surface is defined by (z=u+iv) 

(2.5.1) x 1(u, v) = Re[

� 
f (1 − g 2)dz], 

2(2.5.2) x (u, v) = Re[

� 
if (1 + g 2)dz], 

(2.5.3) x 3(u, v) = Re[2 f gdz] 

Furthermore if g has an inverse function g−1 in a domain D then by making the change of 

variable τ = g with dτ = g�dz, and defining T = f /g� we get 
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Theorem 2.6. (Weierstrass Enneper Representation II) For any holomorphic func

tion T, a minimal surface is defined by (τ = u + iv) 

(2.6.1)	 x 1(u, v) = Re[

� 
(1 − τ 2)T (τ)dτ ], 

2(2.6.2)	 x (u, v) = Re[

� 
i(1 + τ 2)T (τ)dτ ], 

(2.6.3)	 x 3(u, v) = Re[2 τT (τ)dτ ] 

The ordered pair (f, g) is called Weierstrass-Enneper data for the surface. A proof of the 

following can be found in [Oprea]. 

Theorem 2.7. (Gaussian curvature in terms of Weierstrass-Enneper data) Given a surface 

x with Weierstrass-Enneper data (f, g), the Gaussian curvature equals 

−4 
K = |T |2(1 + u2 + v2)4 

where T = f 
g

2.8. Gauss map and steographic projection. Let x be a regular surface with isothermal 

parameters. Since xu, xv and N constitute an orthogonal basis one has the following equations 

for Nu and Nv 

Nu, xu Nu, xv Nu, N e 
(2.8.1) Nu = 

� � 
xu + 

� � 
xv + 

� � 
N = xu − 

f
xv 

xu, xu xv , xv� � � � �N, N� − 
E E 

Nv , xu Nv , xv Nv , N	 g
(2.8.2) Nv = 

� � 
xu + 

� � 
xv + 

� � 
N = 

f
xu − xv 

xu, xu xv , xv� � � � �N, N� − 
E E 

Now using the above and employing the facts that e + g = 0 and K = e2+f 2 
we get 

E2− 

(2.8.3)	 Nu, Nu = −EK = Nv , Nv , Nu, Nv = 0 

2Now let S2 = {(x, y, z) x2 + y2 + z = 1}	be the usual 2 dimensional sphere. Steographic |
projection from the North pole N is defined by 

R2(2.8.4)	 St : S2 − N →
x y

(2.8.5)	 St(x, y, z) = ( , , 0)
1 − z 1 − z 

Theorem 2.9. Let x be a minimal surface with isothermal parameters and Weierstrass-

Enneper data (f, g). Then g = St N ◦ 
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Proof A long but straightforward computation yields 

φ3 

St(N(u, v)) = 
φ1 − iφ2 

We refer the reader to [Oprea] for details. 

3. A Condition for a Minimal Surface to be not Area Minimizing 

In this section we show that a surface is not an area minimizer for a piece of the surface 

whose image under the Gauss map contains more than a hemisphere. (By piece of a surface 

we mean the image of the surface restricted to a bounded, closed, simply connected subset 

of the domain) 

This theorem is very useful in disproving the area-minimizing of the surfaces. However the 

converse is not true: there are many examples of minimal surfaces whose Gaussian image does 

not contain a hemisphere and yet are not area minimizers. We give some of these examples 

in section 4. 

Theorem 3.1. Let x : U R3 be a regular minimal surface given by Weierstrass-Enneper → 

representation II. Let R be a region in U. If the closed unit disk is contained in the interior 

of R then x(R) does not have the minimum area among the curves spanning x(∂R) 

Proof Define a family of surfaces yt by 

t y = x + tρN 

where ρ : R R is a C2 function that vanishes on ∂R. We have → 

(3.1.1) y t = xu + t(ρuN + ρNu)u 

(3.1.2) y t = yv + t(ρv N + ρNv )v 

The coefficients of first fundamental form of yt are 

(3.1.3) Et = xu, xu + 2t(ρu N, xu + ρ Nu, xu + t2(ρ2 + ρ Nu, Nu )u 

2(ρ2(3.1.4) = E + 2t(−ρe) + t u − EK) 

Similarly 

(3.1.5) F t = t(−2ρf) + t2(ρuρv ) 

2(ρ2(3.1.6) Gt = E + 2t(ρe) + t v − EK) 
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The determinant of the first fundamental form of yt is 

2 3(3.1.7) EtGt − (F t)2 = E2 + t2(E(ρ2 + ρ2 
v) − 4ρ2 e − 4ρ2f 2 − 2E2K) + O(t )u 

2(E(ρ2 3(3.1.8) = E2 + t + ρ2 
v) + 2ρ2E2K) + O(t )u 

The area of yt(R) is 
� � �

E2 + t2(E(ρ2 + ρ2A(t) = v) + 2ρ2E2K) + O(t3)dudvu 
R 

Now assume that the integrand has the Taylor series expansion a0 + a1t + a2t
2 + ... about 

zero.Taking the square and equating the coefficients yields 

1 
a0 = E, a1 = 0, a2 = (ρ2 + ρ2 + 2ρ2EK)v2 u 

We therefore obtain 

(3.1.9) A(0) = area(x(R)) 

(3.1.10) A�(0) = 0 

(3.1.11) A��(0) = 
� � 

(ρ2 + ρ2 + 2ρ2EK)dudvu v 
R 

On the other hand by Green’s theorem we have 
� � 

∂(ρρu) ∂(ρρv) 
�

(3.1.12) ( + )dudv = (−ρρudv + ρρvdu)
∂u ∂v ∂R R 

Since ρ is zero on the boundary of R we get 
� � 

(ρ2 + ρ2 

� � 

v)dudv = − 
R 

ρΔρdudvu 
R 

where Δρ = ρuu + ρvv is the Laplacian of ρ. Therefore 

(3.1.13) A��(0) = ρ(2ρEK − Δρ)dudv 
R 

Assume that x minimizes the area x(R) and that R contains a unit disk. Then by 3.1.9 we 

must have 

(−ρΔρ + 2ρ2EK)dudv ≥ 0 
R 

for any C2 function ρ : U R2 that vanishes on the boundary of R.The existence of ρ that → 

makes the integral negative will give us the desired result since then the area of x(R) will be 
2a local maximum for the variation yt = x + tρN . If we substitute for E = 2(1 + u2 + v2)2 T| |

−4and K = |T |2(1+u2+v2)4 into the integral we obtain 

(3.1.14) A��(0) = 
� � 

( 
−8ρ2 

(1 + u2 + v2)2 
− ρΔρ)dudv 

R 
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Now let D(r) be the closed disk with center at the origin and radius r.Define 
2 2 

ρr (u, v) = 
u2 + v − r

2u2 + v2 + r

and 

S(r) = 
� � 

( 
−8(ρr )2

2)2 
− ρr Δρr )dudv 

D(r) (1 + u2 + v

It’s easy to check that the integrand becomes zero when r = 1. To simplify S(r) let us 

make a change of variables by taking u = rs and v = rt with du = rds and dv = rdt. 

s /r and ρr = ρ1ρr (u, v) = ρ1(s, t), and by chain rule ρr = ρ1 
ss/r

2 similarly for v. Writing ρu uu 

instead of ρ1 for short we have 
2� � 

8ρ2r
S(r) = − ( + ρΔρ)dsdt 

D(1) (1 + r2(s2 + t2))2 

We want to show that S(r) < 0 for r slightly larger than 1. So we need to compute S �(1) 

Since the derivative of the integral equals the integral of the derivative we have 

S �(r) = − 
� � 

16ρ2r(1 + r2(s2 + t2))2 − 32ρ2r3(1 + r2(s2 + t2))(s2 + t2) 
dsdt 

D(1) (1 + r2(s2 + t2))4 

At r = 1 the expression becomes 

(3.1.15) S �(1) = − 
� � 

16ρ2(1 + s2 + t2) − 32ρ2(s2 + t2) 
dsdt 

D(1) (1 + s2 + t2)3 

2� � 
16ρ2(1 + s2 + t2 − 2s − 2t2)

(3.1.16) = − 
D(1) (1 + s2 + t2)3 

dsdt 

� � 
(s2 + t2 − 1)3 

(3.1.17) = 16 dsdt 
D(1) (s

2 + t2 + 1)3 

The integral is negative because the numerator of the integrand is always negative. We know 

that S(1) = 0 and S �(1) < 0 therefore there exists r so that S(r) < 0 whenever 1 < r < r. 

Now fix 1 < r < r and define ρ̃ : R R: →
�

ρr (u, v) if (u, v) is in D(r)
ρ̃(u, v) = 

0 otherwise 

Now for ρ = ρ̃ the right hand side of (3.1.14) is equal to S(r) and thus is negative. Note that 

the derivatives of ρ̃ have discontinuities on D(r) but we can round them off keeping A��(0) 

negative. 

Finally note that the domain of T in Weierstrass-Enneper representation is the same as 

the image of the Gauss map composed with Steographic projection from the North pole. 

Therefore a minimal surface given in Weierstrass Enneper II parametrization contains the 

unit disk if and only if the Gauss map contains the Southern hemisphere. On the other hand 
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by a change of variables we can change any point on the image of the Gauss map into the 

North pole. Therefore we deduce 

Theorem 3.2. A piece of a minimal surface is not area minimized by the surface if its image 

under the Gauss map contains a hemisphere. 

4. Examples and Non-examples 

4.1. Enneper’s Surface. A nice application of 3.1 is to take a closed curve in R3 together 

with two minimal surfaces spanning the curve, one of which is the actual area minimizer and 

the other of whose Gauss map contains a hemisphere, and compare the areas enclosed by the 

surfaces. However this turns out to be very difficult because there seems to be no example 

of two or more explicit minimal surfaces spanning a given curve(see [Oprea] p. 114). Now 
2 2 2consider Enneper’s surface x(u, v) = (u − u3/3 + uv , −v + v3/3 − vu , u − v2). It is known 

that this curve has no self intersections for u2 + v2 < 3 and it is not hard to see that g(z) = z. 

Therefore the Gaussian image of any domain U that contains the unit disk and is contained in 

(u, v) u2 + v2 < 3 will contain the Southern hemisphere and hence is not the area minimizer |
for the curve C determined by applying Enneper’s surface’s parametrization to the boundary 

of U. But by Douglas and Radó we know that there is a solution to Plateau’s problem for 

the curve C. So there exists two minimal surfaces spanning C. 

4.2. Catenoid. Now consider the catenoid. It is known that the catenoid is the solution 

to Plateau’s problem for two identical and parallel circles. On the other hand one might 

begin with a catenoid and compare the areas of two disks with the area of the part of the 

catenoid bounded by the circles. A Weierstrass-Enneper II representation of the catenoid is 
zgiven by T (τ) = 1 In order to simplify integrals choose τ = −e . For this choice of τ

2τ 2 . 
z 

Weierstrass-Enneper data of catenoid is (f, g) = (− e
2 , −ez ) Note that g never takes the value 

0. Therefore the domain of τ can never contain the unit disk. Letting z = u + iv gives 

x(u, v) = (cosh u cos v, cosh u sin v, u) 

Easy computation yields: 

E = cosh2 u = G, F = 0 

Now note that the image of the curve u = c corresponds to a disk with radius cosh c on the 
ccatenoid and a disk with radius e on τ plane. Therefore the part of the catenoid bounded 

by the circles with equal radii correspond to the infinite strip between u = c and u = −c on 
c(u, v) plane and the annulus bounded by the circles centered at origin of radii e and e−c on 
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τ plane. Simple calculus gives 
c� 
cosh2 udu = 

π(e2c − e−2c + 8c)
the lateral area = 2π 

2−c 

the total area of two disks equals 

π(e2c + e−2c + 2) 
2π cosh2 c = 

2 

Plotting by matlab shows that the total area of the disks become smaller than the lateral 

area if c > 0.64. We finish this section by stating the conclusions that we draw from the 

above discussion: 

Given a surface with Weierstrass-Enneper data (f, g) with g holomorphic , theorem 3.1 

does not apply if the image of g does not contain the origin. It also does not apply if the 

image of the Gauss map skips two antipodal points on the sphere. 

5. Schwarz’s Theorem 

We first introduce the notation and the background needed for Schwarz’s theorem and then 

we give an outline of its proof. Then we show that theorem 3.1 is a corollary of Schwarz’s 

theorem. 

Let M be a two-dimensional, orientable compact C∞ manifold. A domain D ⊂ M is an 

open, connected subset with compact closure D and such that the boundary ∂D is a finite 

union of piecewise smooth curves. Let x : M R3 be a minimal surface into the Euclidean → 

space R3.(here we require x to be only piecewise smooth not necessarily smooth) By the 

construction of minimal surface equation we know that D is a critical point of the area for 

all variations of D which keep ∂D fixed. When this critical value is a minimum for all such 

variations, we say that D is stable. 

Now we recall the formula for the laplacian operator on 2-manifolds in terms of the para

metrization (u1, u2): 

2
1 ∂ ∂ij(5.0.1) ΔM = 

�	

∂ui 
(detG1/2 g

uj 
)

detG1/2 
i,j=1 

Where G is the matrix for the first fundamental form and (gij ) = G−1 . If we view a surface 

with isothermal coordinates as a manifold 5.0.1 gives 

1 
(5.0.2)	 ΔM = Δ 

EM 
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Where we have used EM to denote the E-coefficient of the first fundamental form of the 

manifold M. Therefore (3.1.13) becomes 

(5.0.3) A��(0) = ρ(−ΔM ρ + 2ρK)dM 
R 

Where dM = Edudv is the area element of M. If A��(0) > 0 for all ρ (here we again assume 

that ρ is only piecewise smooth) then D is stable. We say that D is unstable if for some ρ, 

A��(0) < 0. 

We denote by H(D) the space of C∞ functions on D which are not identically zero and 

vanish on ∂D. We call a positive real number λ an eigenvalue in D for ΔM if there exists 

u ∈ H(D) such that ΔM u + λu = 0. The eigenspace associated with λ is 

Pλ(D) = {u ∈ H(D) ΔM u + λu = 0}|
It is known that the eigenvalues form a discrete set of positive numbers. We denote the 

smallest of them by λ1 

Theorem 5.1. (Schwarz’s Theorem [BdC]) Let D ⊂ M be a domain and assume that 

the Gauss map N, restricted to D is a branched covering onto N (D). Assume further that 

the first eigenvalue for the laplacian ΔS2 in N (D) is smaller than two. Then D is unstable. 

Proof. Let λ1 be the first eigenvalue for ΔS2 in N (D). Then there is a function u : S2 R → 

satisfying ΔS2 u + λ1u = 0 Note that N is a parametrization of N (D). Furthermore by (2.8.3) 

we know that this parametrization is isothermal. By (2.8.3) and 5.0.2 we have 

1 1 
ΔS2 = Δ = − ΔM .− 

EK K 

Now write u in terms of this new parametrization by letting f = u N.(Note here that f is ◦ 

an eigenfunction of the laplace operator ΔS2 with eigenvalue λ1, since the laplace operator 

does not depend on the parametrization.) Then by the above equations we have 

ΔM f = λ1Kf 

If we compute the second derivative of the area for the normal variation f N we obtain 

A��(0) = f (−ΔM f + 2f K)dM = f 2(−K)(λ1 − 2)dM 
D D 

Since the integrand is always negative we deduce A��(0) < 0 hence D is not stable. 

Following lemma relates the first eigenvalues of two domains one contained in the other. 

We refer the reader to [BdC] for its proof: 
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˜ ˜ ˜Lemma 5.2. If D ⊂ D then λ1 ≥ λ1, and equality holds if and only if D = D. (λ̃1, λ1 are 
˜the first eigenvalues of D and D) 

5.2 makes sense since if u ∈ Pλ1 (D̃) then one can extend u to a function in H(D) by letting 

u vanish outside D̃. Therefore λ1 is an eigenvalue of the Laplace operator in D. So the smallest 

eigenvalue of D is less than or equal to that of D̃ (one has to make a more careful analysis to 

show that they are not equal). We show that 3.1 is a corollary of Schwarz’s theorem. 

proof of 3.1 Let u : S2 R be the restriction of the projection u(x, y, z) = z to S2 . It → 

is easy to verify that ΔS2 u + 2u = 0. Furthermore u = 0 on the great circle determined by 

z = 0. So the hemisphere has eigenvalue 2. By 5.2 any region that contains the hemisphere 

has an eigenvalue less than two thus by 5.1, it is not stable. Q.E.D. 

Note here that if our surface is given by Weierstrass-Enneper Representation II then the 
2 2

composition of projection to third coordinate and the Gauss map is u +v −1 which explains 
u2+v2+1 

the mystery behind the choice of the function ρ in the proof of 3.1. 

There are other domains on the sphere that have 2 as the first eigenvalue. It is easily 

checked that the restriction to S2 of 

(1 + z) 
uc,z (x, y, z) = 2 − z log 

(1 − z)
+ cz, z = 1, 0 ≤ c < ∞ 

is a solution to ΔS2 u + 2u = 0. It is easy to see that there are two zeros z1, z2 of u as a 

function of z. If C is the ring shaped domain on the sphere bounded by the circles z = z1 and 

z = z2 then Schwarz’s theorem can be applied using C instead of hemisphere. One can also 

construct other domains with first eigenvalue two by considering the linear combinations of 

uc,x, uc,y , uc,z . We finish the paper by quoting the following companion of Scwarz’s theorem 

from [BdC]: 

Theorem 5.3. (do Carmo and Barbosa) Let D ∈ M be a domain and assume that the 

first eigenvalue λ1 of N(D) is greater than two. Then D is stable. 
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