Chapter 8

Gauss Map I

8.1 "Curvature" of a Surface

We've already discussed the curvature of a curve. We'd like to come up with an analogous concept for the "curvature" of a regular parametrized surface S parametrized by $x: U \rightarrow \mathbb{R}^{n}$. This can't be just a number - we need at the very least to talk about the "curvature of S at p in the direction $v \in T_{p}(S)$ ".

So given $v \in T_{p}(S)$, we can take a curve $\alpha: I \rightarrow S$ such that $\alpha(0)=p$ and $\alpha^{\prime}(0)=v$. (This exists by the definition of the tangent plane.) The curvature of α itself as a curve in \mathbb{R}^{n} is $\frac{d^{2} \alpha}{d s^{2}}$ (note that this is with respect to arc length). However, this depends on the choice of α - for example, if you have the cylinder over the unit circle, and let v be in the tangential direction, both a curve that just goes around the cylinder and a curve that looks more like a parabola that happens to be going purely tangentially at p have the same α^{\prime}, but they do not have the same curvature. But if we choose a field of normal vectors N on the surface, then $\frac{d^{2} \alpha}{d s^{2}} \cdot N_{p}$ is independent of the choice of α (as long as $\alpha(0)=p$ and $\alpha^{\prime}(0)=v$). It's even independent of the magnitude of v - it only depends on its direction \hat{v}. We call this curvature $k_{p}(N, \hat{v})$. For the example, we can see that the first curve's $\alpha^{\prime \prime}$ is 0 , and that the second one's $\alpha^{\prime \prime}$ points in the negative \hat{z} direction, whereas N points in
the radial direction, so $k_{p}(N, \hat{v})$ is zero no matter which α you choose.
(In 3-space with a parametrized surface, we can always choose N to be $\left.N=\frac{x_{u} \wedge x_{v}}{\left|x_{u} \wedge x_{v}\right|}.\right)$

To prove this, we see that $\alpha(s)=x\left(u_{1}(s), u_{2}(s)\right)$, so that $\frac{d \alpha}{d s}=\frac{d u_{1}}{d s} x_{u_{1}}+$ $\frac{d u_{2}}{d s} x_{u_{2}}$ and $\frac{d^{2} \alpha}{d s^{2}}=\frac{d^{2} u_{1}}{d s} x_{u_{1}}+\frac{d u_{1}}{d s}\left(\frac{d u_{1}}{d s} x_{u_{1} u_{1}}+\frac{d u_{2}}{s} x_{u_{1} u_{2}}\right)+\frac{d^{2} u_{2}}{d s} x_{u_{2}}+\frac{d u_{2}}{d s}\left(\frac{d u_{1} s}{d s} x_{u_{1} u_{2}}+\frac{d u_{2}}{s} x_{u_{2} u_{2}}\right)$. But by normality, $N \cdot x_{u_{1}}=N \cdot x_{u_{2}}=0$, so $\frac{d^{2} \alpha}{d s^{2}} \cdot N=\sum_{i, j=1}^{2} b_{i j}(N) \frac{d u_{i}}{d s} \frac{d u_{j}}{d s}$, where $b_{i j}(N)=x_{u_{i} u_{j}} \cdot N$.

We can put the values $b_{i j}$ into a matrix $B(N)=\left[b_{i j}(N)\right]$. It is symmetric, and so it defines a symmetric quadratic form $B=I I: T_{p}(S) \rightarrow \mathbb{R}$. If we use $\left\{x_{u_{1}}, x_{u_{2}}\right\}$ as a basis for $T_{p}(S)$, then $I I\left(c x_{u_{1}}+d x_{u_{2}}\right)=\left(\begin{array}{ll}c & d\end{array}\right)\left(\begin{array}{l}b_{11}(N) \\ b_{21}(N)\end{array} b_{22}(N), ~(N), ~\binom{c}{d}\right.$. We call $I I$ the Second Fundamental Form.
$I I$ is independent of α, since it depends only on the surface (not on α). To show that $k_{p}(N, \hat{v})$ is independent of choice of α, we see that

$$
k_{p}(N, \hat{V})=\frac{d^{2} \alpha}{d s^{2}} \cdot N=\sum_{i j} b_{i j}(N) \frac{d u_{i}}{d s} \frac{d u_{j}}{d s}=\frac{\sum_{i, j} b_{i j}(N) \frac{d u_{i}}{d t} \frac{d u_{j}}{d t}}{\left(\frac{d s}{d t}\right)^{2}}
$$

Now, $s(t)=\int_{t_{0}}^{t}\left|\alpha^{\prime}(t)\right| d t$, so that $\left(\frac{d s}{d t}\right)^{2}=\left|\alpha^{\prime}(t)\right|^{2}=\left|\frac{d u_{1}}{d t} x_{u_{1}}+\frac{d u_{2}}{d t} x_{u_{2}}\right|^{2}=$ $\sum_{i, j}\left(\frac{d u_{i}}{d t}\right)\left(\frac{d u_{j}}{d t}\right) g_{i j}$, where $g_{i j}$ comes from the First Fundamental Form. So

$$
k_{p}(N, \hat{v})=\frac{\sum_{i, j} b_{i j}(N) \frac{d u_{i}}{d t} \frac{d u_{j}}{d t}}{\sum_{i, j} g_{i j} \frac{d u_{i}}{d t} \frac{1 u_{j}}{d t}}
$$

The numerator is just the First Fundamental Form of v, which is to say its length. So the only property of α that this depends on are the derivatives of its components at p, which are just the components of the given vector v. And in fact if we multiply v by a scalar λ, we multiply both the numerator and the denominator by λ^{2}, so that $k_{p}(N, \hat{v})$ doesn't change. So $k_{p}(N, \hat{v})$ depends only on the direction of v, not its magnitude.

If we now let $k_{1}(N)_{p}$ be the maximum value of $k_{p}(N, \hat{v})$. This exists because \hat{v} is chosen from the compact set $S^{1} \subset T_{p}(S)$. Similarly, we let
$k_{2}(N)_{p}$ be the minimal value of $k_{p}(N, \hat{v})$. These are called the principle curvatures of S at p with regards to N. The directions e_{1} and e_{2} yielding these curvatures are called the principal directions. It will turn out that these are the eigenvectors and eigenvalues of a linear operator defined by the Gauss map.

8.2 Gauss Map

Recall that for a surface $x: U \rightarrow S$ in \mathbb{R}^{3}, we can define the Gauss map $N: S \rightarrow S^{2}$ which sends p to $N_{p}=\frac{x_{u_{1}} \wedge x_{u_{2}}}{\left|x_{u_{1}} \wedge x_{u_{2}}\right|}$, the unit normal vector at p. Then $d N_{p}: T_{p}(S) \rightarrow T_{N_{p}}\left(S^{2}\right)$; but $T_{p}(S)$ and $T_{N_{p}}\left(S^{2}\right)$ are the same plane (they have the same normal vector), so we can see this as a linear operator $T_{p}(S) \rightarrow T_{p}(S)$.

For example, if $S=S^{2}$, then $N_{p}=p$, so N_{p} is a linear transform so it is its own derivative, so $d N_{p}$ is also the identity.

For example, if S is a plane, then N_{p} is constant, so its derivative is the zero map.

For example, if S is a right cylinder defined by $(\theta, z) \mapsto(\cos \theta, \sin \theta, z)$, then $N(x, y, z)=(x, y, 0)$. (We can see this because the cylinder is defined by $x^{2}+y^{2}=1$, so $2 x x^{\prime}+2 y y^{\prime}=0$, which means that $(x, y, 0) \cdot\left(x^{\prime}, y^{\prime}, z^{\prime}\right)=0$, so that $(x, y, 0)$ is normal to the velocity of any vector through (x, y, z).) Let us consider the curve α with $\alpha(t)=(\cos t, \sin t, z(t))$, then $\alpha^{\prime}(t)=$ $\left(-\sin t, \cos t, z^{\prime}(t)\right)$. So $(N \circ \alpha)(t)=(x(t), y(t), 0)$, and so $(N \circ \alpha)^{\prime}(t)=$ $(-\sin t, \cos t, 0)$. So $d N_{p}\left(x_{\theta}\right)=x_{\theta}$. So in the basis $\left\{x_{\theta}, x_{z}\right\}$, the matrix is $\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)$. It has determinant 0 and $\frac{1}{2}$ trace equal to $\frac{1}{2}$. It turns out that the determinant of this matrix only depends on the First Fundamental Form, and not how it sits in space - this is why the determinant is the same for the cylinder and the plane. A zero eigenvalue can't go away no matter how you curve the surface, as long as you don't stretch it.

