
Chapter 8

Gauss Map I

8.1 “Curvature” of a Surface

We’ve already discussed the curvature of a curve. We’d like to come up with

an analogous concept for the “curvature” of a regular parametrized surface S

parametrized by x : U → R
n. This can’t be just a number — we need at the

very least to talk about the “curvature of S at p in the direction v ∈ Tp(S)”.

So given v ∈ Tp(S), we can take a curve α : I → S such that α(0) = p

and α′(0) = v. (This exists by the definition of the tangent plane.) The

curvature of α itself as a curve in R
n is d2α

ds2 (note that this is with respect

to arc length). However, this depends on the choice of α — for example,

if you have the cylinder over the unit circle, and let v be in the tangential

direction, both a curve that just goes around the cylinder and a curve that

looks more like a parabola that happens to be going purely tangentially at p

have the same α′, but they do not have the same curvature. But if we choose

a field of normal vectors N on the surface, then d2α
ds2 ·Np is independent of the

choice of α (as long as α(0) = p and α′(0) = v). It’s even independent of the

magnitude of v — it only depends on its direction v̂. We call this curvature

kp(N, v̂). For the example, we can see that the first curve’s α′′ is 0, and that

the second one’s α′′ points in the negative ẑ direction, whereas N points in
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the radial direction, so kp(N, v̂) is zero no matter which α you choose.

(In 3-space with a parametrized surface, we can always choose N to be

N = xu∧xv

|xu∧xv |
.)

To prove this, we see that α(s) = x(u1(s), u2(s)), so that dα
ds

= du1

ds
xu1 +

du2

ds
xu2 and d2α

ds2 = d2u1

ds
xu1+

du1

ds

(
du1

ds
xu1u1 + du2

s
xu1u2

)
+d2u2

ds
xu2+

du2

ds

(
du1

ds
xu1u2 + du2

s
xu2u2

)
.

But by normality, N · xu1 = N · xu2 = 0, so d2α
ds2 · N =

∑2
i,j=1 bij(N)dui

ds

duj

ds
,

where bij(N) = xuiuj
· N .

We can put the values bij into a matrix B(N) = [bij(N)]. It is symmetric,

and so it defines a symmetric quadratic form B = II : Tp(S) → R. If we use

{xu1 , xu2} as a basis for Tp(S), then II(cxu1+dxu2) = ( c d )
(

b11(N) b12(N)
b21(N) b22(N)

)(
c
d

)
.

We call II the Second Fundamental Form.

II is independent of α, since it depends only on the surface (not on α).

To show that kp(N, v̂) is independent of choice of α, we see that

kp(N, V̂ ) =
d2α

ds2
· N =

∑

ij

bij(N)
dui

ds

duj

ds
=

∑
i,j bij(N)dui

dt

duj

dt(
ds
dt

)2

Now, s(t) =
∫ t

t0
|α′(t)| dt, so that

(
ds
dt

)2
= |α′(t)|2 = |du1

dt
xu1 + du2

dt
xu2 |2 =

∑
i,j

(
dui

dt

) (
duj

dt

)
gij, where gij comes from the First Fundamental Form. So

kp(N, v̂) =

∑
i,j bij(N)dui

dt

duj

dt∑
i,j gij

dui

dt

duj

dt

The numerator is just the First Fundamental Form of v, which is to say its

length. So the only property of α that this depends on are the derivatives

of its components at p, which are just the components of the given vector v.

And in fact if we multiply v by a scalar λ, we multiply both the numerator

and the denominator by λ2, so that kp(N, v̂) doesn’t change. So kp(N, v̂)

depends only on the direction of v, not its magnitude.

If we now let k1(N)p be the maximum value of kp(N, v̂). This exists

because v̂ is chosen from the compact set S1 ⊂ Tp(S). Similarly, we let
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k2(N)p be the minimal value of kp(N, v̂). These are called the principle

curvatures of S at p with regards to N . The directions e1 and e2 yielding

these curvatures are called the principal directions. It will turn out that these

are the eigenvectors and eigenvalues of a linear operator defined by the Gauss

map.

8.2 Gauss Map

Recall that for a surface x : U → S in R
3, we can define the Gauss map

N : S → S2 which sends p to Np =
xu1∧xu2

|xu1∧xu2 |
, the unit normal vector at p.

Then dNp : Tp(S) → TNp
(S2); but Tp(S) and TNp

(S2) are the same plane

(they have the same normal vector), so we can see this as a linear operator

Tp(S) → Tp(S).

For example, if S = S2, then Np = p, so Np is a linear transform so it is

its own derivative, so dNp is also the identity.

For example, if S is a plane, then Np is constant, so its derivative is the

zero map.

For example, if S is a right cylinder defined by (θ, z) 7→ (cos θ, sin θ, z),

then N(x, y, z) = (x, y, 0). (We can see this because the cylinder is defined

by x2 + y2 = 1, so 2xx′ +2yy′ = 0, which means that (x, y, 0) · (x′, y′, z′) = 0,

so that (x, y, 0) is normal to the velocity of any vector through (x, y, z).)

Let us consider the curve α with α(t) = (cos t, sin t, z(t)), then α′(t) =

(− sin t, cos t, z′(t)). So (N ◦ α)(t) = (x(t), y(t), 0), and so (N ◦ α)′(t) =

(− sin t, cos t, 0). So dNp(xθ) = xθ. So in the basis {xθ, xz}, the matrix is(
1 0
0 0

)
. It has determinant 0 and 1

2
trace equal to 1

2
. It turns out that the

determinant of this matrix only depends on the First Fundamental Form,

and not how it sits in space — this is why the determinant is the same for

the cylinder and the plane. A zero eigenvalue can’t go away no matter how

you curve the surface, as long as you don’t stretch it.
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