Chapter 7

Tangent Planes

Reading: Do Carmo sections 2.4 and 3.2
Today I am discussing

1. Differentials of maps between surfaces
2. Geometry of Gauss map

7.1 Tangent Planes; Differentials of Maps Between Surfaces

7.1.1 Tangent Planes

Recall from previous lectures the definition of tangent plane.
(Proposition 2-4-1). Let $\mathbf{x}: U \subset \mathbb{R}^{2} \rightarrow S$ be a parameterization of a regular surface S and let $q \in U$. The vector subspace of dimension 2,

$$
\begin{equation*}
d \mathbf{x}_{q}\left(\mathbb{R}^{2}\right) \subset \mathbb{R}^{3} \tag{7.1}
\end{equation*}
$$

coincides with the set of tangent vectors to S at $\mathbf{x}(q)$. We call the plane $d \mathbf{x}_{q}\left(\mathbb{R}^{2}\right)$ the Tangent Plane to S at p, denoted by $T_{p}(S)$.

Figure 7.1: Graphical representation of the map $d x_{q}$ that sends $\beta^{\prime}(0) \in T_{q}\left(\mathbb{R}^{2}\right.$ to $\alpha^{\prime}(0) \in T_{p}(S)$.

Note that the plane $d x_{q}\left(\mathbb{R}^{2}\right)$ does not depend on the parameterization \mathbf{x}. However, the choice of the parameterization determines the basis on $T_{p}(S)$, namely $\left\{\left(\frac{\partial \mathbf{x}}{\partial u}\right)(q),\left(\frac{\partial \mathbf{x}}{\partial v}\right)(q)\right\}$, or $\left\{\mathbf{x}_{u}(q), \mathbf{x}_{v}(q)\right\}$.

7.1.2 Coordinates of $w \in T_{p}(S)$ in the Basis Associated to Parameterization x

Let w be the velocity vector $\alpha^{\prime}(0)$, where $\alpha=\mathbf{x} \circ \beta$ is a curve in the surface S, and the map $\beta:(-\epsilon, \epsilon) \rightarrow U, \beta(t)=(u(t), v(t))$. Then in the basis of $\left\{\mathbf{x}_{u}(q), \mathbf{x}_{v}(q)\right\}$, we have

$$
\begin{equation*}
w=\left(u^{\prime}(0), v^{\prime}(0)\right) \tag{7.2}
\end{equation*}
$$

7.1.3 Differential of a (Differentiable) Map Between Surfaces

It is natural to extend the idea of differential map from $T\left(\mathbb{R}^{2}\right) \rightarrow T(S)$ to $T\left(S_{1}\right) \rightarrow T\left(S_{2}\right)$.

Let S_{1}, S_{2} be two regular surfaces, and a differential mapping $\varphi \subset S_{1} \rightarrow$ S_{2} where V is open. Let $p \in V$, then all the vectors $w \in T_{p}\left(S_{1}\right)$ are velocity vectors $\alpha^{\prime}(0)$ of some differentiable parameterized curve $\alpha:(-\epsilon, \epsilon) \rightarrow V$ with $\alpha(0)=p$.

Define $\beta=\varphi \circ \alpha$ with $\beta(0)=\varphi(p)$, then $\beta^{\prime}(0)$ is a vector of $T_{\varphi(p)}\left(S_{2}\right)$.
(Proposition 2-4-2). Given w, the velocity vector $\beta^{\prime}(0)$ does not depend on the choice of α. Moreover, the map

$$
\begin{align*}
d \varphi_{p}: T_{p}\left(S_{1}\right) & \rightarrow T_{\varphi(p)}\left(S_{2}\right) \tag{7.3}\\
d \varphi_{p}(w) & =\beta^{\prime}(0) \tag{7.4}
\end{align*}
$$

is linear. We call the linear map $d \varphi_{p}$ to be the differential of φ at $p \in S_{1}$.

Proof. Suppose φ is expressed in $\varphi(u, v)=\left(\varphi_{1}(u, v), \varphi_{2}(u, v)\right)$, and $\alpha(t)=$ $(u(t), v(t)), t \in(-\epsilon, \epsilon)$ is a regular curve on the surface S_{1}. Then

$$
\begin{equation*}
\beta(t)=\left(\varphi_{1}(u(t), v(t)), \varphi_{2}(u(t), v(t))\right. \tag{7.5}
\end{equation*}
$$

Differentiating β w.r.t. t, we have

$$
\begin{equation*}
\beta^{\prime}(0)=\left(\frac{\partial \varphi_{1}}{\partial u} u^{\prime}(0)+\frac{\varphi_{1}}{\partial v} v^{\prime}(0), \frac{\partial \varphi_{2}}{\partial u} u^{\prime}(0)+\frac{\varphi_{2}}{\partial v} v^{\prime}(0)\right) \tag{7.6}
\end{equation*}
$$

in the basis of ($\overline{\mathbf{x}}_{u}, \overline{\mathbf{x}}_{v}$).
As shown above, $\beta^{\prime}(0)$ depends on the map φ and the coordinates of $\left(u^{\prime}(0), v^{\prime}(0)\right.$ in the basis of $\left\{\mathbf{x}_{u}, \mathbf{x}_{v}\right\}$. Therefore, it is independent on the choice of α.

x
Figure 7.2: Graphical representation of the map $d \varphi_{p}$ that sends $\alpha^{\prime}(0) \in$ $T_{q}\left(S_{1}\right)$ to $\beta^{\prime}(0) \in T_{p}\left(S_{2}\right)$.

Moreover, Equation 7.6 can be expressed as

$$
\beta^{\prime}(0)=d \varphi_{p}(w)=\left(\begin{array}{ll}
\frac{\partial \varphi_{1}}{\partial u} & \frac{\partial \varphi_{1}}{\partial v} \tag{7.7}\\
\frac{\partial \varphi_{2}}{\partial u} & \frac{\partial \varphi_{2}}{\partial v}
\end{array}\right)\binom{u^{\prime}(0)}{v^{\prime}(0)}
$$

which shows that the map $d \varphi_{p}$ is a mapping from $T_{p}\left(S_{1}\right)$ to $T_{\varphi(p)}\left(S_{2}\right)$. Note that the 2×2 matrix is respect to the basis $\left\{\mathbf{x}_{u}, \mathbf{x}_{v}\right\}$ of $T_{p}\left(S_{1}\right)$ and $\left\{\overline{\mathbf{x}}_{u}, \overline{\mathbf{x}}_{v}\right\}$ of $T_{\varphi(p)}\left(S_{2}\right)$ respectively.

We can define the differential of a (differentiable) function $f: U \subset S \rightarrow R$ at $p \in U$ as a linear map $d f_{p}: T_{p}(S) \rightarrow \mathbb{R}$.
Example 2-4-1: Differential of the height function Let $v \in \mathbb{R}^{3}$. Con-
sider the map

$$
\begin{align*}
& h: S \subset \mathbb{R}^{3} \rightarrow \mathbb{R} \tag{7.8}\\
& h(p)=v \cdot p, p \in S \tag{7.9}
\end{align*}
$$

We want to compute the differential $d h_{p}(w), w \in T_{p}(S)$. We can choose a differential curve $\alpha:(-\epsilon, \epsilon)) \rightarrow S$ such that $\alpha(0)=p$ and $\alpha^{\prime}(0)=w$. We are able to choose such α since the differential $d h_{p}(w)$ is independent on the choice of α. Thus

$$
\begin{equation*}
h(\alpha(t))=\alpha(t) \cdot v \tag{7.10}
\end{equation*}
$$

Taking derivatives, we have

$$
\begin{equation*}
d h_{p}(w)=\left.\frac{d}{d t} h(\alpha(t))\right|_{t=0}=\alpha^{\prime}(0) \cdot v=w \cdot v \tag{7.11}
\end{equation*}
$$

Example 2-4-2: Differential of the rotation Let $S^{2} \subset \mathbb{R}^{3}$ be the unit sphere

$$
\begin{equation*}
S^{2}=\left\{(x, y, z) \in \mathbb{R}^{3} ; x^{2}+y^{2}+z^{2}=1\right\} \tag{7.12}
\end{equation*}
$$

Consider the map

$$
\begin{equation*}
R_{z, \theta}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3} \tag{7.13}
\end{equation*}
$$

be the rotation of angle θ about the z axis. When $R_{z, \theta}$ is restricted to S^{2}, it becomes a differential map that maps S^{2} into itself. For simplicity, we denote the restriction map $R_{z, \theta}$. We want to compute the differential $\left(d R_{z, \theta}\right)_{p}(w), p \in S^{2}, w \in T_{p}\left(S^{2}\right)$. Let $\alpha:(-\epsilon, \epsilon) \rightarrow S^{2}$ be a curve on S^{2} such that $\alpha(0)=p, \alpha^{\prime}(0)=w$. Now

$$
\begin{equation*}
\left(d R_{z, \theta}\right)(w)=\frac{d}{d t}\left(R_{z, \theta} \circ \alpha(t)\right)_{t=0}=R_{z, \theta}\left(\alpha^{\prime}(0)\right)=R_{z, \theta}(w) \tag{7.14}
\end{equation*}
$$

7.1.4 Inverse Function Theorem

All we have done is extending differential calculus in \mathbb{R}^{2} to regular surfaces. Thus, it is natural to have the Inverse Function Theorem extended to the regular surfaces.

A mapping $\varphi: U \subset S_{1} \rightarrow S_{2}$ is a local diffeomorphism at $p \in U$ if there exists a neighborhood $V \subset U$ of p, such that φ restricted to V is a diffeomorphism onto the open set $\varphi(V) \subset S_{2}$.
(Proposition 2-4-3). Let S_{1}, S_{2} be regular surfaces and $\varphi: U \subset S_{1} \rightarrow$ S_{2} a differentiable mapping. If d $\varphi_{p}: T_{p}\left(S_{1}\right) \rightarrow T_{\varphi(p)}\left(S_{2}\right)$ at $p \in U$ is an isomorphism, then φ is a local diffeomorphism at p.

The proof is a direct application of the inverse function theorem in \mathbb{R}^{2}.

7.2 The Geometry of Gauss Map

In this section we will extend the idea of curvature in curves to regular surfaces. Thus, we want to study how rapidly a surface S pulls away from the tangent plane $T_{p}(S)$ in a neighborhood of $p \in S$. This is equivalent to measuring the rate of change of a unit normal vector field N on a neighborhood of p. We will show that this rate of change is a linear map on $T_{p}(S)$ which is self adjoint.

7.2.1 Orientation of Surfaces

Given a parameterization $\mathbf{x}: U \subset \mathbb{R}^{2} \rightarrow S$ of a regular surface S at a point $p \in S$, we choose a unit normal vector at each point $\mathbf{x}(U)$ by

$$
\begin{equation*}
N(q)=\frac{\mathbf{x}_{u} \wedge \mathbf{x}_{v}}{\left|\mathbf{x}_{u} \wedge \mathbf{x}_{v}\right|}(q), q \in \mathbf{x}(U) \tag{7.15}
\end{equation*}
$$

We can think of N to be a map $N: \mathbf{x}(U) \rightarrow \mathbb{R}^{3}$. Thus, each point $q \in \mathbf{x}(U)$ has a normal vector associated to it. We say that N is a differential field

of unit normal vectors on U.

We say that a regular surface is orientable if it has a differentiable field of unit normal vectors defined on the whole surface. The choice of such a field N is called an orientation of S. An example of non-orientable surface is Möbius strip (see Figure 3).

Figure 7.3: Möbius strip, an example of non-orientable surface.

In this section (and probably for the rest of the course), we will only study regular orientable surface. We will denote S to be such a surface with an orientation N which has been chosen.

7.2.2 Gauss Map

(Definition 3-2-1). Let $S \subset \mathbb{R}^{3}$ be a surface with an orientation N and $S^{2} \subset \mathbb{R}^{3}$ be the unit sphere

$$
\begin{equation*}
S^{2}=\left\{(x, y, z) \in \mathbb{R}^{3} ; x^{2}+y^{2}+z^{2}=1\right\} . \tag{7.16}
\end{equation*}
$$

The map $N: S \rightarrow S^{2}$ is called the Gauss map.
The map N is differentiable since the differential,

$$
\begin{equation*}
d N_{p}: T_{p}(S) \rightarrow T_{N(p)}\left(S^{2}\right) \tag{7.17}
\end{equation*}
$$

at $p \in S$ is a linear map.
For a point $p \in S$, we look at each curve $\alpha(t)$ with $\alpha(0)=p$ and compute $N \circ \alpha(t)=N(t)$ where we define that $\operatorname{map} N:(-\epsilon, \epsilon) \rightarrow S^{2}$ with the same notation as the normal field. By this method, we restrict the normal vector N to the curve $\alpha(t)$. The tangent vector $N^{\prime}(0) \in T_{p}\left(S^{2}\right)$ thus measures the rate of change of the normal vector N restrict to the curve $\alpha(t)$ at $t=0$. In other words, $d N_{p}$ measure how N pulls away from $N(p)$ in a neighborhood of p. In the case of the surfaces, this measure is given by a linear map.

Example 3-2-1 (Trivial) Consider S to be the plane $a x+b y+c z+d=0$, the tangent vector at any point $p \in S$ is given by

$$
\begin{equation*}
N=\frac{(a, b, c)}{\sqrt{a^{2}+b^{2}+c^{2}}} \tag{7.18}
\end{equation*}
$$

Since N is a constant throughout $S, d N=0$.

Example 3-2-2 (Gauss map on the Unit Sphere)

Consider $S=S^{2} \subset \mathbb{R}^{3}$, the unit sphere in the space \mathbb{R}^{3}. Let $\alpha(t)=$ $(x(t), y(t), z(t))$ be a curve on S, then we have

$$
\begin{equation*}
2 x x^{\prime}+2 y y^{\prime}+2 z z^{\prime}=0 \tag{7.19}
\end{equation*}
$$

which means that the vector (x, y, z) is normal to the surface at the point (x,y,z). We will choose $N=(-x,-y,-z)$ to be the normal field of S. Restricting to the curve $\alpha(t)$, we have

$$
\begin{equation*}
N(t)=(-x(t),-y(t),-z(t)) \tag{7.20}
\end{equation*}
$$

and therefore

$$
\begin{equation*}
d N\left(x^{\prime}(t), y^{\prime}(t), z^{\prime}(t)\right)=\left(-x^{\prime}(t),-y^{\prime}(t),-z^{\prime}(t)\right) \tag{7.21}
\end{equation*}
$$

or $d N_{p}(v)=-v$ for all $p \in S$ and $v \in T_{p}\left(S^{2}\right)$.

Example 3-2-4 (Exercise: Gauss map on a hyperbolic paraboloid)

 Find the differential $d N_{p=(0,0,0)}$ of the normal field of the paraboloid $S \subset \mathbb{R}^{3}$ defined by$$
\begin{equation*}
\mathbf{x}(u, v)=\left(u, v, v^{2}-u^{2}\right) \tag{7.22}
\end{equation*}
$$

under the parameterization $\mathbf{x}: U \subset \mathbb{R}^{2} \rightarrow S$.

7.2.3 Self-Adjoint Linear Maps and Quadratic Forms

Let V now be a vector space of dimension 2 endowed with an inner product \langle,$\rangle .$

Let $A: V \rightarrow V$ be a linear map. If $\langle A v, w\rangle=\langle v, A w\rangle$ for all $v, w \in V$, then we call A to be a self-adjoint linear map.

Let $\left\{e_{1}, e_{2}\right\}$ be a orthonormal basis for V and $\left(\alpha_{i j}\right), i, j=1,2$ be the matrix elements of A in this basis. Then, according to the axiom of selfadjoint, we have

$$
\begin{equation*}
\left\langle A e_{i}, e_{j}\right\rangle=\alpha_{i j}=\left\langle e_{i}, A e_{j}\right\rangle=\left\langle A e_{j}, e_{i}\right\rangle=\alpha_{j i} \tag{7.23}
\end{equation*}
$$

There A is symmetric.
To each self-adjoint linear map, there is a bilinear map $B: V \times V \rightarrow \mathbb{R}$ given by

$$
\begin{equation*}
B(v, w)=\langle A v, w\rangle \tag{7.24}
\end{equation*}
$$

It is easy to prove that B is a bilinear symmetric form in V.
For each bilinear form B in V, there is a quadratic form $Q: V \rightarrow \mathbb{R}$ given by

$$
\begin{equation*}
Q(v)=B(v, v), v \in V \tag{7.25}
\end{equation*}
$$

Exercise (Trivial): Show that

$$
\begin{equation*}
B(u, v)=\frac{1}{2}[Q(u+v)-Q(v)-Q(u)] \tag{7.26}
\end{equation*}
$$

Therefore, there is a 1-1 correspondence between quadratic form and selfadjoint linear maps of V.

Goal for the rest of this section: Show that given a self-adjoint linear map $A: V \rightarrow V$, there exist a orthonormal basis for V such that, relative to this basis, the matrix A is diagonal matrix. Moreover, the elements of the diagonal are the maximum and minimum of the corresponding quadratic form restricted to the unit circle of V.
(Lemma (Exercise)). If $Q(x, y)=a x^{2}=2 b x y+c y^{2}$ restricted to $\left\{(x, y) ; x^{2}+\right.$ $\left.y^{2}=1\right\}$ has a maximum at $(1,0)$, then $b=0$

Hint: Reparametrize (x, y) using $x=\cos t, y=\cos t, t \in(-\epsilon, 2 \pi+\epsilon)$ and set $\left.\frac{d Q}{d t}\right|_{t=0}=0$.
(Proposition 3A-1). Given a quadratic form Q in V, there exists an orthonormal basis $\left\{e_{1}, e_{2}\right\}$ of V such that if $v \in V$ is given by $v=x e_{1}+y e_{2}$, then

$$
\begin{equation*}
Q(v)=\lambda_{1} x^{2}+\lambda_{2} y^{2} \tag{7.27}
\end{equation*}
$$

where $\lambda_{i}, i=1,2$ are the maximum and minimum of the map Q on $|v|=1$ respectively.

Proof. Let λ_{1} be the maximum of Q on the circle $|v|=1$, and e_{1} to be the unit vector with $Q\left(e_{1}\right)=\lambda_{1}$. Such e_{1} exists by continuity of Q on the compact set $|v|=1$.

Now let e_{2} to be the unit vector orthonormal to e_{1}, and let $\lambda_{2}=Q\left(e_{2}\right)$. We will show that this set of basis satisfy the proposition.

Let B be a bilinear form associated to Q. If $v=x e_{1}+y e_{2}$, then

$$
\begin{equation*}
Q(v)=B(v, v)=\lambda_{1} x^{2}+2 b x y+\lambda_{2} y^{2} \tag{7.28}
\end{equation*}
$$

where $b=B\left(e_{1}, e_{2}\right)$. From previous lemma, we know that $b=0$. So now it suffices to show that λ_{2} is the minimum of Q on $|v|=1$. This is trivial since
we know that $x^{2}+y^{2}=1$ and

$$
\begin{equation*}
Q(v)=\lambda_{1} x^{2}+\lambda_{2} y^{2} \geq \lambda_{2}\left(x^{2}+y^{2}\right)=\lambda_{2} \tag{7.29}
\end{equation*}
$$

as $\lambda 2 \leq \lambda 1$.
If $v \neq 0$, then v is called the eigenvector of $A: V \rightarrow V$ if $A v=\lambda v$ for some real λ. We call the λ the corresponding eigenvalue.
(Theorem 3A-1). Let $A: V \rightarrow V$ be a self-adjoint linear map, then there exist an orthonormal basis $\left\{e_{1}, e_{2}\right\}$ of V such that

$$
\begin{equation*}
A\left(e_{1}\right)=\lambda_{1} e_{1}, \quad A\left(e_{2}\right)=\lambda_{2} e_{2} \tag{7.30}
\end{equation*}
$$

Thus, A is diagonal in this basis and $\lambda_{i}, i=1,2$ are the maximum and minimum of $Q(v)=\langle A v, v\rangle$ on the unit circle of V.

Proof. Consider $Q(v)=\langle A v, v\rangle$ where $v=(x, y)$ in the basis of $e_{i}, i=1,2$. Recall from the previous lemma that $Q(x, y)=a x^{2}+c y^{2}$ for some $a, c \in \mathbb{R}$. We have $Q\left(e_{1}\right)=Q(1,0)=a, Q\left(e_{2}\right)=Q(0,1)=c$, therefore $Q\left(e_{1}+e_{2}\right)=$ $Q(1,1)=a+c$ and

$$
\begin{equation*}
B\left(e_{1}, e_{2}\right)=\frac{1}{2}\left[Q\left(e_{1}+e_{2}\right)-Q\left(e_{1}\right)-Q\left(e_{2}\right)\right]=0 \tag{7.31}
\end{equation*}
$$

Thus, $A e_{1}$ is either parallel to e_{1} or equal to 0 . In any case, we have $A e_{1}=$ $\lambda_{1} e_{1}$. Using $B\left(e_{1}, e_{2}\right)=\left\langle A e_{2}, e_{1}\right\rangle=0$ and $\left\langle A e_{2}, e_{2}\right\rangle=\lambda_{2}$, we have $A e_{2}=$ $\lambda_{2} e_{2}$.

Now let us go back to the discussion of Gauss map.
(Proposition 3-2-1). The differential map $d N_{p}: T_{p}(S) \rightarrow T_{p}(S)$ of the Gauss map is a self-adjoint linear map.

Proof. It suffices to show that

$$
\begin{equation*}
\left\langle d N_{p}\left(w_{1}\right), w_{2}\right\rangle=\left\langle w_{1}, d N_{p}\left(w_{2}\right)\right\rangle \tag{7.32}
\end{equation*}
$$

for the basis $\left\{w_{1}, w_{2}\right\}$ of $T_{p}(S)$.
Let $\mathbf{x}(u, v)$ be a parameterization of S at p, then $\mathbf{x}_{u}, \mathbf{x}_{v}$ is a basis of $T_{p}(S)$. Let $\alpha(t)=\mathbf{x}(u(t), v(t))$ be a parameterized curve in S with $\alpha(0)=p$, we have

$$
\begin{align*}
d N_{p}\left(\alpha^{\prime}(0)\right) & =d N_{p}\left(x_{u} u^{\prime}(0)+x_{v} v^{\prime}(0)\right) \tag{7.33}\\
& =\left.\frac{d}{d t} N(u(t), v(t))\right|_{t=0} \tag{7.34}\\
& =N_{u} u^{\prime}(0)+N_{v} v^{\prime}(0) \tag{7.35}
\end{align*}
$$

with $d N_{p}\left(\mathbf{x}_{u}\right)=N_{u}$ and $d N_{p}\left(\mathbf{x}_{v}\right)=N_{v}$. So now it suffices to show that

$$
\begin{equation*}
\left\langle N_{u}, \mathbf{x}_{v}\right\rangle=\left\langle\mathbf{x}_{u}, N_{v}\right\rangle \tag{7.36}
\end{equation*}
$$

If we take the derivative of $\left\langle N, \mathbf{x}_{u}\right\rangle=0$ and $\left\langle N, \mathbf{x}_{v}\right\rangle=0$, we have

$$
\begin{align*}
& \left\langle N_{v}, \mathbf{x}_{u}\right\rangle+\left\langle N, \mathbf{x}_{u} v\right\rangle=0 \tag{7.37}\\
& \left\langle N_{u}, \mathbf{x}_{v}\right\rangle+\left\langle N, \mathbf{x}_{v} u\right\rangle=0 \tag{7.38}
\end{align*}
$$

Therefore

$$
\begin{equation*}
\left\langle N_{u}, \mathbf{x}_{v}\right\rangle=-\left\langle N, \mathbf{x}_{u} v\right\rangle=\left\langle N_{v}, \mathbf{x}_{u}\right\rangle \tag{7.39}
\end{equation*}
$$

