
Chapter 7

Tangent Planes

Reading: Do Carmo sections 2.4 and 3.2

Today I am discussing

1. Differentials of maps between surfaces

2. Geometry of Gauss map

7.1 Tangent Planes; Differentials of Maps Be-

tween Surfaces

7.1.1 Tangent Planes

Recall from previous lectures the definition of tangent plane.

(Proposition 2-4-1). Let x : U ⊂ R
2 → S be a parameterization of a

regular surface S and let q ∈ U . The vector subspace of dimension 2,

dxq(R
2) ⊂ R

3 (7.1)

coincides with the set of tangent vectors to S at x(q). We call the plane

dxq(R
2) the Tangent Plane to S at p, denoted by Tp(S).
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Figure 7.1: Graphical representation of the map dxq that sends β′(0) ∈ Tq(R
2

to α′(0) ∈ Tp(S).

Note that the plane dxq(R
2) does not depend on the parameterization x.

However, the choice of the parameterization determines the basis on Tp(S),

namely {(∂x

∂u
)(q), (∂x

∂v
)(q)}, or {xu(q),xv(q)}.

7.1.2 Coordinates of w ∈ Tp(S) in the Basis Associated

to Parameterization x

Let w be the velocity vector α′(0), where α = x ◦ β is a curve in the surface

S, and the map β : (−ǫ, ǫ) → U , β(t) = (u(t), v(t)). Then in the basis of

{xu(q),xv(q)}, we have

w = (u′(0), v′(0)) (7.2)
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7.1.3 Differential of a (Differentiable) Map Between

Surfaces

It is natural to extend the idea of differential map from T (R2) → T (S) to

T (S1) → T (S2).

Let S1, S2 be two regular surfaces, and a differential mapping ϕ ⊂ S1 →
S2 where V is open. Let p ∈ V , then all the vectors w ∈ Tp(S1) are velocity

vectors α′(0) of some differentiable parameterized curve α : (−ǫ, ǫ) → V with

α(0) = p.

Define β = ϕ ◦ α with β(0) = ϕ(p), then β′(0) is a vector of Tϕ(p)(S2).

(Proposition 2-4-2). Given w, the velocity vector β′(0) does not depend

on the choice of α. Moreover, the map

dϕp : Tp(S1) → Tϕ(p)(S2) (7.3)

dϕp(w) = β′(0) (7.4)

is linear. We call the linear map dϕp to be the differential of ϕ at p ∈ S1.

Proof. Suppose ϕ is expressed in ϕ(u, v) = (ϕ1(u, v), ϕ2(u, v)), and α(t) =

(u(t), v(t)), t ∈ (−ǫ, ǫ) is a regular curve on the surface S1. Then

β(t) = (ϕ1(u(t), v(t)), ϕ2(u(t), v(t)). (7.5)

Differentiating β w.r.t. t, we have

β′(0) =

(
∂ϕ1

∂u
u′(0) +

ϕ1

∂v
v′(0),

∂ϕ2

∂u
u′(0) +

ϕ2

∂v
v′(0)

)
(7.6)

in the basis of (x̄u, x̄v).

As shown above, β′(0) depends on the map ϕ and the coordinates of

(u′(0), v′(0) in the basis of {xu,xv}. Therefore, it is independent on the

choice of α.
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Figure 7.2: Graphical representation of the map dϕp that sends α′(0) ∈
Tq(S1) to β′(0) ∈ Tp(S2).

Moreover, Equation 7.6 can be expressed as

β′(0) = dϕp(w) =

( ∂ϕ1

∂u

∂ϕ1

∂v
∂ϕ2

∂u

∂ϕ2

∂v

) (
u′(0)

v′(0)

)
(7.7)

which shows that the map dϕp is a mapping from Tp(S1) to Tϕ(p)(S2). Note

that the 2 × 2 matrix is respect to the basis {xu,xv} of Tp(S1) and {x̄u, x̄v}
of Tϕ(p)(S2) respectively.

We can define the differential of a (differentiable) function f : U ⊂ S → R

at p ∈ U as a linear map dfp : Tp(S) → R.

Example 2-4-1: Differential of the height function Let v ∈ R
3. Con-
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sider the map

h : S ⊂ R
3 → R (7.8)

h(p) = v · p, p ∈ S (7.9)

We want to compute the differential dhp(w), w ∈ Tp(S). We can choose a

differential curve α : (−ǫ, ǫ)) → S such that α(0) = p and α′(0) = w. We

are able to choose such α since the differential dhp(w) is independent on the

choice of α. Thus

h(α(t)) = α(t) · v (7.10)

Taking derivatives, we have

dhp(w) =
d

dt
h(α(t))|t=0 = α′(0) · v = w · v (7.11)

Example 2-4-2: Differential of the rotation Let S2 ⊂ R
3 be the unit

sphere

S2 = {(x, y, z) ∈ R
3; x2 + y2 + z2 = 1} (7.12)

Consider the map

Rz,θ : R
3 → R

3 (7.13)

be the rotation of angle θ about the z axis. When Rz,θ is restricted to

S2, it becomes a differential map that maps S2 into itself. For simplicity,

we denote the restriction map Rz,θ. We want to compute the differential

(dRz,θ)p(w), p ∈ S2, w ∈ Tp(S
2). Let α : (−ǫ, ǫ) → S2 be a curve on S2 such

that α(0) = p, α′(0) = w. Now

(dRz,θ)(w) =
d

dt
(Rz,θ ◦ α(t))t=0 = Rz,θ(α

′(0)) = Rz,θ(w) (7.14)
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7.1.4 Inverse Function Theorem

All we have done is extending differential calculus in R
2 to regular surfaces.

Thus, it is natural to have the Inverse Function Theorem extended to the

regular surfaces.

A mapping ϕ : U ⊂ S1 → S2 is a local diffeomorphism at p ∈ U if

there exists a neighborhood V ⊂ U of p, such that ϕ restricted to V is a

diffeomorphism onto the open set ϕ(V ) ⊂ S2.

(Proposition 2-4-3). Let S1, S2 be regular surfaces and ϕ : U ⊂ S1 →
S2 a differentiable mapping. If dϕp : Tp(S1) → Tϕ(p)(S2) at p ∈ U is an

isomorphism, then ϕ is a local diffeomorphism at p.

The proof is a direct application of the inverse function theorem in R
2.

7.2 The Geometry of Gauss Map

In this section we will extend the idea of curvature in curves to regular sur-

faces. Thus, we want to study how rapidly a surface S pulls away from the

tangent plane Tp(S) in a neighborhood of p ∈ S. This is equivalent to mea-

suring the rate of change of a unit normal vector field N on a neighborhood

of p. We will show that this rate of change is a linear map on Tp(S) which is

self adjoint.

7.2.1 Orientation of Surfaces

Given a parameterization x : U ⊂ R
2 → S of a regular surface S at a point

p ∈ S, we choose a unit normal vector at each point x(U) by

N(q) =
xu ∧ xv

|xu ∧ xv|
(q), q ∈ x(U) (7.15)

We can think of N to be a map N : x(U) → R
3. Thus, each point q ∈ x(U)

has a normal vector associated to it. We say that N is a differential field
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of unit normal vectors on U .

We say that a regular surface is orientable if it has a differentiable field

of unit normal vectors defined on the whole surface. The choice of such a

field N is called an orientation of S. An example of non-orientable surface

is Möbius strip (see Figure 3).

Figure 7.3: Möbius strip, an example of non-orientable surface.

In this section (and probably for the rest of the course), we will only

study regular orientable surface. We will denote S to be such a surface with

an orientation N which has been chosen.

7.2.2 Gauss Map

(Definition 3-2-1). Let S ⊂ R
3 be a surface with an orientation N and

S2 ⊂ R
3 be the unit sphere

S2 = {(x, y, z) ∈ R
3; x2 + y2 + z2 = 1}. (7.16)

The map N : S → S2 is called the Gauss map.

The map N is differentiable since the differential,

dNp : Tp(S) → TN(p)(S
2) (7.17)
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at p ∈ S is a linear map.

For a point p ∈ S, we look at each curve α(t) with α(0) = p and compute

N ◦ α(t) = N(t) where we define that map N : (−ǫ, ǫ) → S2 with the same

notation as the normal field. By this method, we restrict the normal vector

N to the curve α(t). The tangent vector N ′(0) ∈ Tp(S
2) thus measures the

rate of change of the normal vector N restrict to the curve α(t) at t = 0. In

other words, dNp measure how N pulls away from N(p) in a neighborhood

of p. In the case of the surfaces, this measure is given by a linear map.

Example 3-2-1 (Trivial) Consider S to be the plane ax + by + cz + d = 0,

the tangent vector at any point p ∈ S is given by

N =
(a, b, c)√

a2 + b2 + c2
(7.18)

Since N is a constant throughout S, dN = 0.

Example 3-2-2 (Gauss map on the Unit Sphere)

Consider S = S2 ⊂ R
3, the unit sphere in the space R

3. Let α(t) =

(x(t), y(t), z(t)) be a curve on S, then we have

2xx′ + 2yy′ + 2zz′ = 0 (7.19)

which means that the vector (x, y, z) is normal to the surface at the point

(x,y,z). We will choose N = (−x,−y,−z) to be the normal field of S.

Restricting to the curve α(t), we have

N(t) = (−x(t),−y(t),−z(t)) (7.20)

and therefore

dN(x′(t), y′(t), z′(t)) = (−x′(t),−y′(t),−z′(t)) (7.21)

or dNp(v) = −v for all p ∈ S and v ∈ Tp(S
2).
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Example 3-2-4 (Exercise: Gauss map on a hyperbolic paraboloid)

Find the differential dNp=(0,0,0) of the normal field of the paraboloid S ⊂ R
3

defined by

x(u, v) = (u, v, v2 − u2) (7.22)

under the parameterization x : U ⊂ R
2 → S.

7.2.3 Self-Adjoint Linear Maps and Quadratic Forms

Let V now be a vector space of dimension 2 endowed with an inner product

〈 , 〉.
Let A : V → V be a linear map. If 〈Av,w〉 = 〈v, Aw〉 for all v, w ∈ V ,

then we call A to be a self-adjoint linear map.

Let {e1, e2} be a orthonormal basis for V and (αij), i, j = 1, 2 be the

matrix elements of A in this basis. Then, according to the axiom of self-

adjoint, we have

〈Aei, ej〉 = αij = 〈ei, Aej〉 = 〈Aej, ei〉 = αji (7.23)

There A is symmetric.

To each self-adjoint linear map, there is a bilinear map B : V × V → R

given by

B(v, w) = 〈Av,w〉 (7.24)

It is easy to prove that B is a bilinear symmetric form in V .

For each bilinear form B in V , there is a quadratic form Q : V → R

given by

Q(v) = B(v, v), v ∈ V. (7.25)

Exercise (Trivial): Show that

B(u, v) =
1

2
[Q(u + v) − Q(v) − Q(u)] (7.26)
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Therefore, there is a 1-1 correspondence between quadratic form and self-

adjoint linear maps of V .

Goal for the rest of this section: Show that given a self-adjoint linear

map A : V → V , there exist a orthonormal basis for V such that, relative

to this basis, the matrix A is diagonal matrix. Moreover, the elements of

the diagonal are the maximum and minimum of the corresponding quadratic

form restricted to the unit circle of V .

(Lemma (Exercise)). If Q(x, y) = ax2 = 2bxy+cy2 restricted to {(x, y); x2+

y2 = 1} has a maximum at (1, 0), then b = 0

Hint: Reparametrize (x, y) using x = cos t, y = cos t, t ∈ (−ǫ, 2π + ǫ) and

set dQ
dt
|t=0 = 0.

(Proposition 3A-1). Given a quadratic form Q in V , there exists an

orthonormal basis {e1, e2} of V such that if v ∈ V is given by v = xe1 + ye2,

then

Q(v) = λ1x
2 + λ2y

2 (7.27)

where λi, i = 1, 2 are the maximum and minimum of the map Q on |v| = 1

respectively.

Proof. Let λ1 be the maximum of Q on the circle |v| = 1, and e1 to be

the unit vector with Q(e1) = λ1. Such e1 exists by continuity of Q on the

compact set |v| = 1.

Now let e2 to be the unit vector orthonormal to e1, and let λ2 = Q(e2).

We will show that this set of basis satisfy the proposition.

Let B be a bilinear form associated to Q. If v = xe1 + ye2, then

Q(v) = B(v, v) = λ1x
2 + 2bxy + λ2y

2 (7.28)

where b = B(e1, e2). From previous lemma, we know that b = 0. So now it

suffices to show that λ2 is the minimum of Q on |v| = 1. This is trivial since
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we know that x2 + y2 = 1 and

Q(v) = λ1x
2 + λ2y

2 ≥ λ2(x
2 + y2) = λ2 (7.29)

as λ2 ≤ λ1.

If v 6= 0, then v is called the eigenvector of A : V → V if Av = λv for

some real λ. We call the λ the corresponding eigenvalue.

(Theorem 3A-1). Let A : V → V be a self-adjoint linear map, then there

exist an orthonormal basis {e1, e2} of V such that

A(e1) = λ1e1, A(e2) = λ2e2. (7.30)

Thus, A is diagonal in this basis and λi, i = 1, 2 are the maximum and

minimum of Q(v) = 〈Av, v〉 on the unit circle of V .

Proof. Consider Q(v) = 〈Av, v〉 where v = (x, y) in the basis of ei, i = 1, 2.

Recall from the previous lemma that Q(x, y) = ax2 + cy2 for some a, c ∈ R.

We have Q(e1) = Q(1, 0) = a,Q(e2) = Q(0, 1) = c, therefore Q(e1 + e2) =

Q(1, 1) = a + c and

B(e1, e2) =
1

2
[Q(e1 + e2) − Q(e1) − Q(e2)] = 0 (7.31)

Thus, Ae1 is either parallel to e1 or equal to 0. In any case, we have Ae1 =

λ1e1. Using B(e1, e2) = 〈Ae2, e1〉 = 0 and 〈Ae2, e2〉 = λ2, we have Ae2 =

λ2e2.

Now let us go back to the discussion of Gauss map.

(Proposition 3-2-1). The differential map dNp : Tp(S) → Tp(S) of the

Gauss map is a self-adjoint linear map.

Proof. It suffices to show that

〈dNp(w1), w2〉 = 〈w1, dNp(w2)〉 (7.32)
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for the basis {w1, w2} of Tp(S).

Let x(u, v) be a parameterization of S at p, then xu,xv is a basis of Tp(S).

Let α(t) = x(u(t), v(t)) be a parameterized curve in S with α(0) = p, we

have

dNp(α
′(0)) = dNp(xuu

′(0) + xvv
′(0)) (7.33)

=
d

dt
N(u(t), v(t))|t=0 (7.34)

= Nuu
′(0) + Nvv

′(0) (7.35)

with dNp(xu) = Nu and dNp(xv) = Nv. So now it suffices to show that

〈Nu,xv〉 = 〈xu, Nv〉 (7.36)

If we take the derivative of 〈N,xu〉 = 0 and 〈N,xv〉 = 0, we have

〈Nv,xu〉 + 〈N,xuv〉 = 0 (7.37)

〈Nu,xv〉 + 〈N,xvu〉 = 0 (7.38)

Therefore

〈Nu,xv〉 = −〈N,xuv〉 = 〈Nv,xu〉 (7.39)
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