
Chapter 5

First Fundamental Form

5.1 Tangent Planes

One important tool for studying surfaces is the tangent plane. Given a given

regular parametrized surface S embedded in R
n and a point p ∈ S, a tangent

vector to S at p is a vector in R
n that is the tangent vector α′(0) of a

differential parametrized curve α : (−ǫ, ǫ) → S with α(0) = p. Then the

tangent plane Tp(S) to S at p is the set of all tangent vectors to S at p. This

is a set of R
3-vectors that end up being a plane.

An equivalent way of thinking of the tangent plane is that it is the image

of R
2 under the linear transformation Dx(q), where x is the map from a

domain D → S that defines the surface, and q is the point of the domain that

is mapped onto p. Why is this equivalent? We can show that x is invertible.

So given any tangent vector α′(0), we can look at γ = x−1 ◦ α, which is a

curve in D. Then α′(0) = (x ◦ γ)′(0) = (Dx(γ(0)) ◦ γ′)(0) = Dx(q)(γ′(0)).

Now, γ can be chosen so that γ′(0) is any vector in R
2. So the tangent plane

is the image of R
2 under the linear transformation Dx(q).

Certainly, though, the image of R
2 under an invertible linear transfor-

mation (it’s invertible since the surface is regular) is going to be a plane

including the origin, which is what we’d want a tangent plane to be. (When
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I say that the tangent plane includes the origin, I mean that the plane itself

consists of all the vectors of a plane through the origin, even though usually

you’d draw it with all the vectors emanating from p instead of the origin.)

This way of thinking about the tangent plane is like considering it as

a “linearization” of the surface, in the same way that a tangent line to a

function from R → R is a linear function that is locally similar to the function.

Then we can understand why Dx(q)(R2) makes sense: in the same way we

can “replace” a function with its tangent line which is the image of R under

the map t 7→ f ′(p)t + C, we can replace our surface with the image of R
2

under the map Dx(q).

The interesting part of seeing the tangent plane this way is that you can

then consider it as having a basis consisting of the images of (1, 0) and (0, 1)

under the map Dx(q). These images are actually just (if the domain in R
2

uses u1 and u2 as variables) ∂x
∂u1

and ∂x
∂u2

(which are n-vectors).

5.2 The First Fundamental Form

Nizam mentioned the First Fundamental Form. Basically, the FFF is a way

of finding the length of a tangent vector (in a tangent plane). If w is a tangent

vector, then |w|2 = w · w. Why is this interesting? Well, it becomes more

interesting if you’re considering w not just as its R
3 coordinates, but as a

linear combination of the two basis vectors ∂x
∂u1

and ∂x
∂u2

. Say w = a ∂x
∂u1

+b ∂x
∂u2

;

then
|w|2 =

(
a ∂x

∂u1
+ b ∂x

∂u2

)
·
(
a ∂x

∂u1
+ b ∂x

∂u2

)

= a2 ∂x
∂u1

· ∂x
∂u1

+ 2ab ∂x
∂u1

· ∂x
∂u2

+ b2 ∂x
∂u2

· ∂x
∂u2

.
(5.1)

Let’s deal with notational differences between do Carmo and Osserman.

do Carmo writes this as Ea2 + 2Fab + Gb2, and refers to the whole thing as

Ip : Tp(S) → R.1 Osserman lets g11 = E, g12 = g21 = F (though he never

1Well, actully he’s using u′ and v′ instead of a and b at this point, which is because
these coordinates come from a tangent vector, which is to say they are the u′(q) and v′(q)
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makes it too clear that these two are equal), and g22 = G, and then lets the

matrix that these make up be G, which he also uses to refer to the whole

form. I am using Osserman’s notation.

Now we’ll calculate the FFF on the cylinder over the unit circle; the

parametrized surface here is x : (0, 2π) × R → S ⊂ R
3 defined by x(u, v) =

(cos u, sin u, v). (Yes, this misses a vertical line of the cylinder; we’ll fix

this once we get away from parametrized surfaces.) First we find that ∂x
∂u

=

(− sin u, cos u, 0) and ∂x
∂v

= (0, 0, 1). Thus g11 = ∂x
∂u

· ∂x
∂u

= sin2 u + cos2 u = 1,

g21 = g12 = 0, and g22 = 1. So then |w|2 = a2 + b2, which basically means

that the length of a vector in the tangent plane to the cylinder is the same

as it is in the (0, 2π) × R that it’s coming from.

As an exercise, calculate the first fundamental form for the sphere S2

parametrized by x : (0, π) × (0, 2π) → S2 with

x(θ, ϕ) = (sin θ cos ϕ, sin θ sin ϕ, cos θ). (5.2)

We first calculate that ∂x
∂θ

= (cos θ cos ϕ, cos θ sin ϕ,− sin θ) and ∂x
∂ϕ

=

(− sin θ sin ϕ, sin θ cos ϕ, 0). So we find eventually that |w|2 = a2 + b2 sin2 θ.

This makes sense — movement in the ϕ direction (latitudinally) should be

“worth more” closer to the equator, which is where sin2 θ is maximal.

5.3 Area

If we recall the exterior product from last time, we can see that
∣∣∂x
∂u

∧ ∂x
∂v

∣∣ is

the area of the parallelogram determined by ∂x
∂u

and ∂x
∂v

. This is analogous to

the fact that in 18.02 the magnitude of the cross product of two vectors is

the area of the parallelogram they determine. Then
∫

Q

∣∣∂x
∂u

∧ ∂x
∂v

∣∣ dudv is the

area of the bounded region Q in the surface. But Nizam showed yesterday

of some curve in the domain D.
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that Lagrange’s Identity implies that

∣∣∣∣
∂x

∂u
∧ ∂x

∂v

∣∣∣∣
2

=

∣∣∣∣
∂x

∂u

∣∣∣∣
2 ∣∣∣∣

∂x

∂v

∣∣∣∣
2

−
(

∂x

∂u
· ∂x

∂v

)2

(5.3)

Thus
∣∣∂x
∂u

∧ ∂x
∂v

∣∣ =
√

g11g22 − g2
12. Thus, the area of a bounded region Q in

the surface is
∫

Q

√
g11g22 − g2

12dudv.

For example, let us compute the surface area of a torus; let’s let the

radius of a meridian be r and the longitudinal radius be a. Then the

torus (minus some tiny strip) is the image of x : (0, 2π) × (0, 2π) → S1 ×
S1 where x(u, v) = ((a + r cos u) cos v, (a + r cos u) sin v), r sin u). Then
∂x
∂u

= (−r sin u cos v,−r sin u sin v, r cos u), and ∂x
∂v

= (−(a+r cos u) sin v, (a+

r cos u) cos v, 0). So g11 = r2, g12 = 0, and g22 = (r cos u + a)2. Then√
g11g22 − g2

12 = r(r cos u + a). Integrating this over the whole square, we

get

A =

∫ 2π

0

∫ 2π

0

(r2 cos u + ra)dudv

=

(∫ 2π

0

(r2 cos u + ra)du

)(∫ 2π

0

dv

)

= (r2 sin 2π + ra2π)(2π) = 4π2ra

And this is the surface area of a torus!

30

(This lecture was given Wednesday, September 29, 2004.)




