Chapter 5

First Fundamental Form

5.1 Tangent Planes

One important tool for studying surfaces is the tangent plane. Given a given regular parametrized surface S embedded in \mathbb{R}^{n} and a point $p \in S$, a tangent vector to S at p is a vector in \mathbb{R}^{n} that is the tangent vector $\alpha^{\prime}(0)$ of a differential parametrized curve $\alpha:(-\epsilon, \epsilon) \rightarrow S$ with $\alpha(0)=p$. Then the tangent plane $T_{p}(S)$ to S at p is the set of all tangent vectors to S at p. This is a set of \mathbb{R}^{3}-vectors that end up being a plane.

An equivalent way of thinking of the tangent plane is that it is the image of \mathbb{R}^{2} under the linear transformation $D x(q)$, where x is the map from a domain $D \rightarrow S$ that defines the surface, and q is the point of the domain that is mapped onto p. Why is this equivalent? We can show that x is invertible. So given any tangent vector $\alpha^{\prime}(0)$, we can look at $\gamma=x^{-1} \circ \alpha$, which is a curve in D. Then $\alpha^{\prime}(0)=(x \circ \gamma)^{\prime}(0)=\left(D x(\gamma(0)) \circ \gamma^{\prime}\right)(0)=D x(q)\left(\gamma^{\prime}(0)\right)$. Now, γ can be chosen so that $\gamma^{\prime}(0)$ is any vector in \mathbb{R}^{2}. So the tangent plane is the image of \mathbb{R}^{2} under the linear transformation $D x(q)$.

Certainly, though, the image of \mathbb{R}^{2} under an invertible linear transformation (it's invertible since the surface is regular) is going to be a plane including the origin, which is what we'd want a tangent plane to be. (When

I say that the tangent plane includes the origin, I mean that the plane itself consists of all the vectors of a plane through the origin, even though usually you'd draw it with all the vectors emanating from p instead of the origin.)

This way of thinking about the tangent plane is like considering it as a "linearization" of the surface, in the same way that a tangent line to a function from $\mathbb{R} \rightarrow \mathbb{R}$ is a linear function that is locally similar to the function. Then we can understand why $D x(q)\left(\mathbb{R}^{2}\right)$ makes sense: in the same way we can "replace" a function with its tangent line which is the image of \mathbb{R} under the map $t \mapsto f^{\prime}(p) t+C$, we can replace our surface with the image of \mathbb{R}^{2} under the map $D x(q)$.

The interesting part of seeing the tangent plane this way is that you can then consider it as having a basis consisting of the images of $(1,0)$ and $(0,1)$ under the map $D x(q)$. These images are actually just (if the domain in \mathbb{R}^{2} uses u_{1} and u_{2} as variables) $\frac{\partial x}{\partial u_{1}}$ and $\frac{\partial x}{\partial u_{2}}$ (which are n-vectors).

5.2 The First Fundamental Form

Nizam mentioned the First Fundamental Form. Basically, the FFF is a way of finding the length of a tangent vector (in a tangent plane). If w is a tangent vector, then $|w|^{2}=w \cdot w$. Why is this interesting? Well, it becomes more interesting if you're considering w not just as its \mathbb{R}^{3} coordinates, but as a linear combination of the two basis vectors $\frac{\partial x}{\partial u_{1}}$ and $\frac{\partial x}{\partial u_{2}}$. Say $w=a \frac{\partial x}{\partial u_{1}}+b \frac{\partial x}{\partial u_{2}}$; then

$$
\begin{align*}
|w|^{2} & =\left(a \frac{\partial x}{\partial u_{1}}+b \frac{\partial x}{\partial u_{2}}\right) \cdot\left(a \frac{\partial x}{\partial u_{1}}+b \frac{\partial x}{\partial u_{2}}\right) \tag{5.1}\\
& =a^{2} \frac{\partial x}{\partial u_{1}} \cdot \frac{\partial x}{\partial u_{1}}+2 a b \frac{\partial x}{\partial u_{1}} \cdot \frac{\partial x}{\partial u_{2}}+b^{2} \frac{\partial x}{\partial u_{2}} \cdot \frac{\partial x}{\partial u_{2}} .
\end{align*}
$$

Let's deal with notational differences between do Carmo and Osserman. do Carmo writes this as $E a^{2}+2 F a b+G b^{2}$, and refers to the whole thing as $I_{p}: T_{p}(S) \rightarrow \mathbb{R} .{ }^{1}$ Osserman lets $g_{11}=E, g_{12}=g_{21}=F$ (though he never

[^0]makes it too clear that these two are equal), and $g_{22}=G$, and then lets the matrix that these make up be G, which he also uses to refer to the whole form. I am using Osserman's notation.

Now we'll calculate the FFF on the cylinder over the unit circle; the parametrized surface here is $x:(0,2 \pi) \times \mathbb{R} \rightarrow S \subset \mathbb{R}^{3}$ defined by $x(u, v)=$ $(\cos u, \sin u, v)$. (Yes, this misses a vertical line of the cylinder; we'll fix this once we get away from parametrized surfaces.) First we find that $\frac{\partial x}{\partial u}=$ $(-\sin u, \cos u, 0)$ and $\frac{\partial x}{\partial v}=(0,0,1)$. Thus $g_{11}=\frac{\partial x}{\partial u} \cdot \frac{\partial x}{\partial u}=\sin ^{2} u+\cos ^{2} u=1$, $g_{21}=g_{12}=0$, and $g_{22}=1$. So then $|w|^{2}=a^{2}+b^{2}$, which basically means that the length of a vector in the tangent plane to the cylinder is the same as it is in the $(0,2 \pi) \times \mathbb{R}$ that it's coming from.

As an exercise, calculate the first fundamental form for the sphere S^{2} parametrized by $x:(0, \pi) \times(0,2 \pi) \rightarrow S^{2}$ with

$$
\begin{equation*}
x(\theta, \varphi)=(\sin \theta \cos \varphi, \sin \theta \sin \varphi, \cos \theta) . \tag{5.2}
\end{equation*}
$$

We first calculate that $\frac{\partial x}{\partial \theta}=(\cos \theta \cos \varphi, \cos \theta \sin \varphi,-\sin \theta)$ and $\frac{\partial x}{\partial \varphi}=$ $(-\sin \theta \sin \varphi, \sin \theta \cos \varphi, 0)$. So we find eventually that $|w|^{2}=a^{2}+b^{2} \sin ^{2} \theta$. This makes sense - movement in the φ direction (latitudinally) should be "worth more" closer to the equator, which is where $\sin ^{2} \theta$ is maximal.

5.3 Area

If we recall the exterior product from last time, we can see that $\left|\frac{\partial x}{\partial u} \wedge \frac{\partial x}{\partial v}\right|$ is the area of the parallelogram determined by $\frac{\partial x}{\partial u}$ and $\frac{\partial x}{\partial v}$. This is analogous to the fact that in 18.02 the magnitude of the cross product of two vectors is the area of the parallelogram they determine. Then $\int_{Q}\left|\frac{\partial x}{\partial u} \wedge \frac{\partial x}{\partial v}\right| \mathrm{d} u \mathrm{~d} v$ is the area of the bounded region Q in the surface. But Nizam showed yesterday
of some curve in the domain D.
that Lagrange's Identity implies that

$$
\begin{equation*}
\left|\frac{\partial x}{\partial u} \wedge \frac{\partial x}{\partial v}\right|^{2}=\left|\frac{\partial x}{\partial u}\right|^{2}\left|\frac{\partial x}{\partial v}\right|^{2}-\left(\frac{\partial x}{\partial u} \cdot \frac{\partial x}{\partial v}\right)^{2} \tag{5.3}
\end{equation*}
$$

Thus $\left|\frac{\partial x}{\partial u} \wedge \frac{\partial x}{\partial v}\right|=\sqrt{g_{11} g_{22}-g_{12}^{2}}$. Thus, the area of a bounded region Q in the surface is $\int_{Q} \sqrt{g_{11} g_{22}-g_{12}^{2}} \mathrm{~d} u \mathrm{~d} v$.

For example, let us compute the surface area of a torus; let's let the radius of a meridian be r and the longitudinal radius be a. Then the torus (minus some tiny strip) is the image of $x:(0,2 \pi) \times(0,2 \pi) \rightarrow S^{1} \times$ S^{1} where $\left.x(u, v)=((a+r \cos u) \cos v,(a+r \cos u) \sin v), r \sin u\right)$. Then $\frac{\partial x}{\partial u}=(-r \sin u \cos v,-r \sin u \sin v, r \cos u)$, and $\frac{\partial x}{\partial v}=(-(a+r \cos u) \sin v,(a+$ $r \cos u) \cos v, 0)$. So $g_{11}=r^{2}, g_{12}=0$, and $g_{22}=(r \cos u+a)^{2}$. Then $\sqrt{g_{11} g_{22}-g_{12}^{2}}=r(r \cos u+a)$. Integrating this over the whole square, we get

$$
\begin{aligned}
A & =\int_{0}^{2 \pi} \int_{0}^{2 \pi}\left(r^{2} \cos u+r a\right) \mathrm{d} u \mathrm{~d} v \\
& =\left(\int_{0}^{2 \pi}\left(r^{2} \cos u+r a\right) \mathrm{d} u\right)\left(\int_{0}^{2 \pi} \mathrm{~d} v\right) \\
& =\left(r^{2} \sin 2 \pi+r a 2 \pi\right)(2 \pi)=4 \pi^{2} r a
\end{aligned}
$$

And this is the surface area of a torus!
(This lecture was given Wednesday, September 29, 2004.)

[^0]: ${ }^{1}$ Well, actully he's using u^{\prime} and v^{\prime} instead of a and b at this point, which is because these coordinates come from a tangent vector, which is to say they are the $u^{\prime}(q)$ and $v^{\prime}(q)$

