Chapter 4

Implicit Function Theorem

4.1 Implicit Functions

Theorem 4.1.1. Implicit Function Theorem Suppose $f: \mathbb{R}^{n} \times \mathbb{R}^{m} \longrightarrow$ \mathbb{R}^{m} is continuously differentiable in an open set containing (a, b) and $f(a, b)=$ 0 . Let M be the $m \times m$ matrix $D_{n+j} f^{i}(a, b), 1 \leq i, j \leq m$ If $\operatorname{det}(M) \neq 0$, there is an open set $A \subset \mathbb{R}^{n}$ containing a and an open set $B \subset \mathbb{R}^{m}$ containing b, with the following property: for each $x \in A$ there is a unique $g(x) \in B$ such that $f(x, g(x))=0$. The function g is differentiable.
proof Define $F: \mathbb{R}^{n} \times \mathbb{R}^{m} \longrightarrow \mathbb{R}^{n} \times \mathbb{R}^{m}$ by $F(x, y)=(x, f(x, y))$. Then $\operatorname{det}(d F(a, b))=\operatorname{det}(M) \neq 0$. By inverse function theorem there is an open set $W \subset \mathbb{R}^{n} \times \mathbb{R}^{m}$ containing $F(a, b)=(a, 0)$ and an open set in $\mathbb{R}^{n} \times \mathbb{R}^{m}$ containing (a, b), which we may take to be of the form $A \times B$, such that $F: A \times B \longrightarrow W$ has a differentiable inverse $h: W \longrightarrow A \times B$. Clearly h is the form $h(x, y)=(x, k(x, y))$ for some differentiable function k (since f is of this form)Let $\pi: \mathbb{R}^{n} \times \mathbb{R}^{m} \longrightarrow \mathbb{R}^{m}$ be defined by $\pi(x, y)=y$; then $\pi \circ F=f$. Therefore $f(x, k(x, y))=f \circ h(x, y)=(\pi \circ F) \circ h(x, y)=\pi(x, y)=y$ Thus $f(x, k(x, 0))=0$ in other words we can define $g(x)=k(x, 0)$

As one might expect the position of the m columns that form M is immaterial. The same proof will work for any $f^{\prime}(a, b)$ provided that the rank
of the matrix is m.
Example $f: \mathbb{R}^{2} \longrightarrow \mathbb{R}, f(x, y)=x^{2}+y^{2}-1 . D f=(2 x 2 y)$ Let $(a, b)=$ $(3 / 5,4 / 5) \mathrm{M}$ will be $(8 / 5)$. Now implicit function theorem guarantees the existence and teh uniqueness of g and open intervals $I, J \subset \mathbb{R}, 3 / 5 \in I, 4 /$ in J so that $g: I \longrightarrow J$ is differentiable and $x^{2}+g(x)^{2}-1=0$. One can easily verify this by choosing $I=(-1,1), J=(0,1)$ and $g(x)=\sqrt{1-x^{2}}$. Note that the uniqueness of $g(x)$ would fail to be true if we did not choose J appropriately.
example Let A be an $m \times(m+n)$ matrix. Consider the function f : $\mathbb{R}^{n+m} \longrightarrow \mathbb{R}^{m}, f(x)=A x$ Assume that last m columns $C_{n+1}, C_{n+2}, \ldots, C_{m+n}$ are linearly independent. Break A into blocks $A=\left[A^{\prime} \mid M\right]$ so that M is the $m \times m$ matrix formed by the last m columns of A. Now the equation $A X=0$ is a system of m linear equations in $m+n$ unknowns so it has a nontrivial solution. Moreover it can be solved as follows: Let $X=\left[X_{1} \mid X_{2}\right]$ where $X_{1} \in \mathbb{R}^{n \times 1}$ and $X_{2} \in \mathbb{R}^{m \times 1} A X=0$ implies $A^{\prime} X_{1}+M X_{2}=0 \Rightarrow X_{2}=$ $M^{-1} A^{\prime} X_{1}$. Now treat f as a function mapping $\mathbb{R}^{n} \times \mathbb{R}^{m} \longrightarrow \mathbb{R}^{m}$ by setting $f\left(X_{1}, X_{2}\right)=A X$. Let $f(a, b)=0$. Implicit function theorem asserts that there exist open sets $I \subset \mathbb{R}^{n}, J \subset \mathbb{R}^{m}$ and a function $g: I \longrightarrow J$ so that $f(x, g(x))=0$. By what we did above $g=M^{-1} A^{\prime}$ is the desired function. So the theorem is true for linear transformations and actually I and J can be chosen \mathbb{R}^{n} and \mathbb{R}^{m} respectively.

4.2 Parametric Surfaces

(Following the notation of Osserman E^{n} denotes the Euclidean n-space.) Let D be a domain in the u-plane, $u=\left(u_{1}, u_{2}\right)$. A parametric surface is simply the image of some differentiable transformation $u: D \longrightarrow E^{n}$. (A non-empty open set in \mathbb{R}^{2} is called a domain.)
Let us denote the Jacobian matrix of the mapping $x(u)$ by

$$
M=\left(m_{i j}\right) ; m_{i j}=\frac{\partial x_{i}}{\partial u_{j}}, i=1,2, . ., n ; j=1,2 .
$$

We introduce the exterior product

$$
v \wedge w ; w \wedge v \in E^{n(n-1) / 2}
$$

where the components of $v \wedge w$ are the determinants $\operatorname{det}\left(\begin{array}{cc}v_{i} & v_{j} \\ u_{i} & u_{j}\end{array}\right)$ arranged in some fixed order. Finally let

$$
G=\left(g_{i j}\right)=M^{T} M ; g_{i j}=\frac{\partial x}{\partial u_{i}}, \frac{\partial x}{\partial u_{j}}
$$

Note that G is a 2×2 matrix. To compute $\operatorname{det}(G)$ we recall Lagrange's identity:

$$
\left(\sum_{k=1}^{n} a_{k}^{2}\right)\left(\sum_{k=1}^{n} b_{k}^{2}\right)-\left(\sum_{k=1}^{n} a_{k} b_{k}\right)^{2}=\sum_{1 \leq i, j \leq n}\left(a_{i} b_{j}-a_{j} b_{i}\right)^{2}
$$

Proof of Lagrange's identity is left as an exercise. Using Langrange's identity one can deduce

$$
\operatorname{det}(G)=\left|\frac{\partial x}{\partial u_{1}} \wedge x u_{2}\right|^{2}=\sum_{1 \leq i, j \leq n}\left(\frac{\partial\left(x_{i}, x_{j}\right)}{\partial\left(u_{1}, u_{2}\right)}\right)^{2}
$$

