Chapter 3

Inverse Function Theorem

(This lecture was given Thursday, September 16, 2004.)

3.1 Partial Derivatives

Definition 3.1.1. If $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ and $a \in \mathbb{R}^{n}$, then the limit

$$
\begin{equation*}
D_{i} f(a)=\lim _{h \rightarrow 0} \frac{f\left(a^{1}, \ldots, a^{i}+h, \ldots, a^{n}\right)-f\left(a^{1}, \ldots, a^{n}\right)}{h} \tag{3.1}
\end{equation*}
$$

is called the $i^{\text {th }}$ partial derivative of f at a, if the limit exists.
Denote $D_{j}\left(D_{i} f(x)\right)$ by $D_{i, j}(x)$. This is called a second-order (mixed) partial derivative. Then we have the following theorem (equality of mixed partials) which is given without proof. The proof is given later in Spivak, Problem 3-28.

Theorem 3.1.2. If $D_{i, j} f$ and $D_{j, i} f$ are continuous in an open set containing a, then

$$
\begin{equation*}
D_{i, j} f(a)=D_{j, i} f(a) \tag{3.2}
\end{equation*}
$$

We also have the following theorem about partial derivatives and maxima and minima which follows directly from 1-variable calculus:

Theorem 3.1.3. Let $A \subset \mathbb{R}^{n}$. If the maximum (or minimum) of $f: A \rightarrow \mathbb{R}$ occurs at a point a in the interior of A and $D_{i} f(a)$ exists, then $D_{i} f(a)=0$.

Proof: Let $g_{i}(x)=f\left(a^{1}, \ldots, x, \ldots, a^{n}\right) . g_{i}$ has a maximum (or minimum) at a^{i}, and g_{i} is defined in an open interval containing a^{i}. Hence $0=g_{i}^{\prime}\left(a^{i}\right)=0$.

The converse is not true: consider $f(x, y)=x^{2}-y^{2}$. Then f has a minimum along the x -axis at 0 , and a maximum along the y -axis at 0 , but $(0,0)$ is neither a relative minimum nor a relative maximum.

3.2 Derivatives

Theorem 3.2.1. If $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is differentiable at a, then $D_{j} f^{i}(a)$ exists for $1 \leq i \leq m, 1 \leq j \leq n$ and $f^{\prime}(a)$ is the $m x n \operatorname{matrix}\left(D_{j} f^{i}(a)\right)$.

Proof: First consider $m=1$, so $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$. Define $h: \mathbb{R} \rightarrow \mathbb{R}^{n}$ by $h(x)=\left(a^{1}, \ldots, x, \ldots, a^{n}\right)$, with x in the $j^{\text {th }}$ slot. Then $D_{j} f(a)=(f \circ h)^{\prime}\left(a^{j}\right)$. Applying the chain rule,

$$
\begin{align*}
(f \circ h)^{\prime}\left(a^{j}\right) & =f^{\prime}(a) \cdot h^{\prime}\left(a^{j}\right) \\
& =f^{\prime}(a) \cdot\left(\begin{array}{c}
0 \\
\cdot \\
\cdot \\
\cdot \\
\cdot \\
1 \\
\cdot \\
\cdot \\
\cdot \\
0
\end{array}\right) \tag{3.3}
\end{align*}
$$

Thus $D_{j} f(a)$ exists and is the jth entry of the $1 \times n$ matrix $f^{\prime}(a)$.

Spivak 2-3 (3) states that f is differentiable if and only if each f^{i} is. So the theorem holds for arbitrary m , since each f^{i} is differentiable and the ith row of $f^{\prime}(a)$ is $\left(f^{i}\right)^{\prime}(a)$.

The converse of this theorem - that if the partials exists, then the full derivative does - only holds if the partials are continuous.

Theorem 3.2.2. If $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$, then $D f(a)$ exists if all $D_{j} f(i)$ exist in an open set containing a and if each function $D_{j} f(i)$ is continuous at a. (In this case f is called continuously differentiable.)

Proof:: As in the prior proof, it is sufficient to consider $\mathrm{m}=1$ (i.e., $\left.f: \mathbb{R}^{n} \rightarrow \mathbb{R}.\right)$

$$
\begin{align*}
f(a+h)-f(a)= & f\left(a^{1}+h^{1}, a^{2}, \ldots, a^{n}\right)-f\left(a^{1}, \ldots, a^{n}\right) \\
& +f\left(a^{1}+h^{1}, a^{2}+h^{2}, a^{3}, \ldots, a^{n}\right)-f\left(a^{1}+h^{1}, a^{2}, \ldots, a^{n}\right) \\
& +\ldots+f\left(a^{1}+h^{1}, \ldots, a^{n}+h^{n}\right) \\
& -f\left(a^{1}+h^{1}, \ldots, a^{n-1}+h^{n-1}, a^{n}\right) . \tag{3.4}
\end{align*}
$$

$D_{1} f$ is the derivative of the function $g(x)=f\left(x, a^{2}, \ldots, a^{n}\right)$. Apply the mean-value theorem to g :

$$
\begin{equation*}
f\left(a^{1}+h^{1}, a^{2}, \ldots, a^{n}\right)-f\left(a^{1}, \ldots, a^{n}\right)=h^{1} \cdot D_{1} f\left(b_{1}, a^{2}, \ldots, a^{n}\right) \tag{3.5}
\end{equation*}
$$

for some b^{1} between a^{1} and $a^{1}+h^{1}$. Similarly,

$$
\begin{equation*}
h^{i} \cdot D_{i} f\left(a^{1}+h^{1}, \ldots, a^{i-1}+h^{i-1}, b_{i}, \ldots, a^{n}\right)=h^{i} D_{i} f\left(c_{i}\right) \tag{3.6}
\end{equation*}
$$

for some c_{i}. Then

$$
\begin{align*}
& \lim _{h \rightarrow 0} \frac{\left|f(a+h)-f(a)-\sum_{i} D_{i} f(a) \cdot h^{i}\right|}{|h|} \\
& =\lim _{h \rightarrow 0} \frac{\sum_{i}\left[D_{i} f\left(c_{i}\right)-D_{i} f(a) \cdot h^{i}\right]}{| | h \mid} \\
& \leq \lim _{h \rightarrow 0} \sum_{i}\left|D_{i} f\left(c_{i}\right)-D_{i} f(a)\right| \cdot \frac{\left|h^{i}\right|}{|h|} \tag{3.7}\\
& \leq \lim _{h \rightarrow 0} \sum_{i}\left|D_{i} f\left(c_{i}\right)-D_{i} f(a)\right| \\
& =0
\end{align*}
$$

since $D_{i} f$ is continuous at 0 .

Example 3. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be the function $f(x, y)=x y /\left(\sqrt{x^{2}+y^{2}}\right.$ if $(x, y) \neq(0,0)$ and 0 otherwise (when $(x, y)=(0,0))$. Find the partial derivatives at $(0,0)$ and check if the function is differentiable there.

3.3 The Inverse Function Theorem

(A sketch of the proof was given in class.)

