Chapter 2

A Review on Differentiation

Reading: Spivak pp. 15-34, or Rudin 211-220

2.1 Differentiation

Recall from 18.01 that
Definition 2.1.1. A function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is differentiable at $a \in \mathbb{R}^{n}$ if there exists a linear transformation $\lambda: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ such that

$$
\begin{equation*}
\lim _{h \rightarrow 0} \frac{|f(a+h)-f(a)-\lambda(h)|}{|h|}=0 \tag{2.1}
\end{equation*}
$$

The norm in Equation 2.1 is essential since $f(a+h)-f(a)-\lambda(h)$ is in \mathbb{R}^{m} and h is in \mathbb{R}^{n}.

Theorem 2.1.2. If $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is differentiable at $a \in \mathbb{R}^{n}$, then there is a unique linear transformation $\lambda: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ that satisfies Equation (2.1). We denote λ to be $D f(a)$ and call it the derivative of f at a

Proof. Let $\mu: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ such that

$$
\begin{equation*}
\lim _{h \rightarrow 0} \frac{|f(a+h)-f(a)-\mu(h)|}{|h|}=0 \tag{2.2}
\end{equation*}
$$

and $d(h)=f(a+h)-f(a)$, then

$$
\begin{align*}
\lim _{h \rightarrow 0} \frac{|\lambda(h)-\mu(h)|}{|h|} & =\lim _{h \rightarrow 0} \frac{|\lambda(h)-d(h)+d(h)-\mu(h)|}{|h|} \tag{2.3}\\
& \leq \lim _{h \rightarrow 0} \frac{|\lambda(h)-d(h)|}{|h|}+\lim _{h \rightarrow 0} \frac{|d(h)-\mu(h)|}{|h|} \tag{2.4}\\
& =0 . \tag{2.5}
\end{align*}
$$

Now let $h=t x$ where $t \in \mathbb{R}$ and $x \in \mathbb{R}^{n}$, then as $t \rightarrow 0, t x \rightarrow 0$. Thus, for $x \neq 0$, we have

$$
\begin{align*}
\lim _{t \rightarrow 0} \frac{|\lambda(t x)-\mu(t x)|}{|t x|} & =\frac{|\lambda(x)-\mu(x)|}{|x|} \tag{2.6}\\
& =0 \tag{2.7}
\end{align*}
$$

Thus $\mu(x)=\lambda(x)$.

Although we proved in Theorem 2.1.2 that if $D f(a)$ exists, then it is unique. However, we still have not discovered a way to find it. All we can do at this moment is just by guessing, which will be illustrated in Example 1.

Example 1. Let $g: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be a function defined by

$$
\begin{equation*}
g(x, y)=\ln x \tag{2.8}
\end{equation*}
$$

Proposition 2.1.3. $D g(a, b)=\lambda$ where λ satisfies

$$
\begin{equation*}
\lambda(x, y)=\frac{1}{a} \cdot x \tag{2.9}
\end{equation*}
$$

Proof.

$$
\begin{equation*}
\lim _{(h, k) \rightarrow 0} \frac{|g(a+h, b+k)-g(a, b)-\lambda(h, k)|}{|(h, k)|}=\lim _{(h, k) \rightarrow 0} \frac{\left|\ln (a+h)-\ln (a)-\frac{1}{a} \cdot h\right|}{|(h, k)|} \tag{2.10}
\end{equation*}
$$

Since $\ln ^{\prime}(a)=\frac{1}{a}$, we have

$$
\begin{equation*}
\lim _{h \rightarrow 0} \frac{\left|\ln (a+h)-\ln (a)-\frac{1}{a} \cdot h\right|}{|h|}=0 \tag{2.11}
\end{equation*}
$$

Since $|(h, k)| \geq|h|$, we have

$$
\begin{equation*}
\lim _{(h, k) \rightarrow 0} \frac{\left|\ln (a+h)-\ln (a)-\frac{1}{a} \cdot h\right|}{|(h, k)|}=0 \tag{2.12}
\end{equation*}
$$

Definition 2.1.4. The Jacobian matrix of f at a is the $m \times n$ matrix of $D f(a): \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ with respect to the usual bases of \mathbb{R}^{n} and \mathbb{R}^{m}, and denoted $f^{\prime}(a)$.

Example 2. Let g be the same as in Example 1, then

$$
\begin{equation*}
g^{\prime}(a, b)=\left(\frac{1}{a}, 0\right) \tag{2.13}
\end{equation*}
$$

Definition 2.1.5. A function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is differentiable on $A \subset \mathbb{R}^{n}$ if f is diffrentiable at a for all $a \in A$. On the other hand, if $f: A \rightarrow \mathbb{R}^{m}, A \subset$ \mathbb{R}^{n}, then f is called differentiable if f can be extended to a differentiable function on some open set containing A.

2.2 Properties of Derivatives

Theorem 2.2.1. 1. If $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is a constant function, then $\forall a \in \mathbb{R}^{n}$,

$$
\begin{equation*}
D f(a)=0 . \tag{2.14}
\end{equation*}
$$

2. If $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is a linear transformation, then $\forall a \in \mathbb{R}^{n}$

$$
\begin{equation*}
D f(a)=f \tag{2.15}
\end{equation*}
$$

Proof. The proofs are left to the readers
Theorem 2.2.2. If $g: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is defined by $g(x, y)=x y$, then

$$
\begin{equation*}
D g(a, b)(x, y)=b x+a y \tag{2.16}
\end{equation*}
$$

In other words, $g^{\prime}(a, b)=(b, a)$
Proof. Substitute p and $D p$ into L.H.S. of Equation 2.1, we have

$$
\begin{align*}
\lim _{(h, k) \rightarrow 0} \frac{|g(a+h, b+k)-g(a, b)-D g(a, b)(h, k)|}{|(h, k)|} & =\lim _{(h, k) \rightarrow 0} \frac{|h k|}{|(h, k)|} \tag{2.17}\\
& \leq \lim _{(h, k) \rightarrow 0} \frac{\max \left(|h|^{2},|k|^{2}\right)}{\sqrt{h^{2}+k^{2}}} \tag{2.18}\\
& \leq \sqrt{h^{2}+k^{2}} \tag{2.19}\\
& =0 \tag{2.20}
\end{align*}
$$

Theorem 2.2.3. If $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is differentiable at a, and $g: \mathbb{R}^{m} \rightarrow \mathbb{R}^{p}$ is differentiable at $f(a)$, then the composition $g \circ f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{p}$ is differentiable at a, and

$$
\begin{equation*}
D(g \circ f)(a)=D g(f(a)) \circ D f(a) \tag{2.21}
\end{equation*}
$$

Proof. Put $b=f(a), \lambda=f^{\prime}(a), \mu=g^{\prime}(b)$, and

$$
\begin{align*}
& u(h)=f(a+h)-f(a)-\lambda(h) \tag{2.22}\\
& v(k)=g(b+k)-g(b)-\mu(k) \tag{2.23}
\end{align*}
$$

for all $h \in \mathbb{R}^{n}$ and $k \in \mathbb{R}^{m}$. Then we have

$$
\begin{align*}
|u(h)| & =\epsilon(h)|h| \tag{2.24}\\
|v(k)| & =\eta(k)|k| \tag{2.25}
\end{align*}
$$

where

$$
\begin{align*}
& \lim _{h \rightarrow 0} \epsilon(h)=0 \tag{2.26}\\
& \lim _{k \rightarrow 0} \eta(k)=0 \tag{2.27}
\end{align*}
$$

Given h, we can put k such that $k=f(a+h)-f(a)$. Then we have

$$
\begin{equation*}
|k|=|\lambda(h)+u(h)| \leq[\|\lambda\|+\epsilon(h)]|h| \tag{2.28}
\end{equation*}
$$

Thus,

$$
\begin{align*}
g \circ f(a+h)-g \circ f(a)-\mu(\lambda(h)) & =g(b+k)-g(b)-\mu(\lambda(h)) \tag{2.29}\\
& =\mu(k-\lambda(h))+v(k) \tag{2.30}\\
& =\mu(u(h))+v(k) \tag{2.31}
\end{align*}
$$

Thus

$$
\begin{equation*}
\frac{|g \circ f(a+h)-g \circ f(a)-\mu(\lambda(h))|}{|h|} \leq\|\mu\| \epsilon(h)+[\|\lambda\|+\epsilon(h)] \eta(h) \tag{2.32}
\end{equation*}
$$

which equals 0 according to Equation 2.26 and 2.27.

Exercise 1. (Spivak 2-8) Let $f: \mathbb{R} \rightarrow \mathbb{R}^{2}$. Prove that f is differentiable at $a \in \mathbb{R}$ if and only if f^{1} and f^{2} are, and that in this case

$$
\begin{equation*}
f^{\prime}(a)=\binom{\left(f^{1}\right)^{\prime}(a)}{\left(f^{2}\right)^{\prime}(a)} \tag{2.33}
\end{equation*}
$$

Corollary 2.2.4. If $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$, then f is differentiable at $a \in \mathbb{R}^{n}$ if and
only if each f^{i} is, and

$$
\lambda^{\prime}(a)=\left(\begin{array}{c}
\left(f^{1}\right)^{\prime}(a) \tag{2.34}\\
\left(f^{2}\right)^{\prime}(a) \\
\cdot \\
\cdot \\
\cdot \\
\left(f^{m}\right)^{\prime}(a)
\end{array}\right)
$$

Thus, $f^{\prime}(a)$ is the $m \times n$ matrix whose ith row is $\left(f^{i}\right)^{\prime}(a)$
Corollary 2.2.5. If $f, g: \mathbb{R}^{n} \rightarrow \mathbb{R}$ are differentiable at a, then

$$
\begin{align*}
D(f+g)(a) & =D f(a)+D g(a) \tag{2.35}\\
D(f g)(a) & =g(a) D f(a)+f(a) D g(a) \tag{2.36}\\
D(f / g)(a) & =\frac{g(a) D f(a)-f(a) D g(a)}{[g(a)]^{2}}, g(a) \neq 0 \tag{2.37}
\end{align*}
$$

Proof. The proofs are left to the readers.

2.3 Partial Derivatives

Definition 2.3.1. If $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ and $a \in \mathbb{R}^{n}$, then the limit

$$
\begin{equation*}
D_{i} f(a)=\lim _{h \rightarrow 0} \frac{f\left(a^{1}, \ldots, a^{i}+h, \ldots, a^{n}\right)-f\left(a^{1}, \ldots, a^{n}\right)}{h} \tag{2.38}
\end{equation*}
$$

is called the ith partial derivative of f at a if the limit exists.
If we denote $D_{j}\left(D_{i} f\right)(x)$ to be $D_{i, j}(x)$, then we have the following theorem which is stated without proof. (The proof can be found in Problem 3-28 of Spivak)

Theorem 2.3.2. If $D_{i, j} f$ and $D_{j, i} f$ are continuous in an open set containing a, then

$$
\begin{equation*}
D_{i, j} f(a)=D_{j, i} f(a) \tag{2.39}
\end{equation*}
$$

Partial derivatives are useful in finding the extrema of functions.
Theorem 2.3.3. Let $A \subset \mathbb{R}^{n}$. If the maximum (or minimum) of $f: A \rightarrow \mathbb{R}$ occurs at a point a in the interior of A and $D_{i} f(a)$ exists, then $D_{i} f(a)=0$. Proof. The proof is left to the readers.

However the converse of Theorem 2.3.3 may not be true in all cases. (Consider $\left.f(x, y)=x^{2}-y^{2}\right)$.

2.4 Derivatives

Theorem 2.4.1. If $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is differentiable at a, then $D_{j} f^{i}(a)$ exists for $1 \leq i \leq m, 1 \leq j \leq n$ and $f^{\prime}(a)$ is the $m \times n \operatorname{matrix}\left(D_{j} f^{i}(a)\right)$.

