
Chapter 19

Gauss Maps and Minimal

Surfaces

19.1 Two Definitions of Completeness

We’ve already seen do Carmo’s definition of a complete surface — one where

every partial geodesic is extendable to a geodesic defined on all of R. Os-

serman uses a different definition of complete, which we will show to be

equivalent (this is also exercise 7 on page 336 of do Carmo).

A divergent curve on S is a differentiable map α : [0,∞) → S such that for

every compact subset K ⊂ S there exists a t0 ∈ (0,∞) with α(t) 6∈ K for all

t > t0 (that is, α leaves every compact subset of S). We define the length of a

divergent curve as limt→∞

∫ t

0
|α′(t)| dt, which can be unbounded. Osserman’s

definition of complete is that every divergent curve has unbounded length.

We will sketch a proof that this is an equivalent definition.

First, we will assume that every divergent curve in S has unbounded

length and show that every geodesic in S can be extended to all of R. Let

γ : [0, ǫ) → S be a geodesic that cannot be extended to all of R; without

loss of generality assume specifically that it cannot of be extended to [0,∞).

Then the set of numbers x such that γ can be extended to [0, x) is nonempty
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(because it contains ǫ) and bounded above (because it cannot be extended to

[0,∞)), so it has an inf R. We note that since we can extend γ to [0, R − δ)

for all (small) δ, we can in fact extend it to γ′ : [0, R) → S. Because γ′ has

constant speed, it must tend to a limit point q ∈ R
n (by completeness of

R
n using a standard topological definition of completeness involving Cauchy

sequences). Let α : [0,∞) → S be defined by α(t) = γ′(R(1 − e−t). Then

α is just a reparametrization of γ′, so it has the same length as γ′, which is

(because γ′ is a geodesic) a constant multiple of R and thus bounded. So if

we can show that α is a divergent curve, we will have a contradiction. Clearly

q is also a limit point of α, since it is a reparametrization of γ′. If q ∈ S, then

a regular neighborhood of q is contained in S and we could have extended

the geodesic further, so q ∈ Bd(S) − S. So if α is in a compact (and thus

closed) subset of S for arbitrarily large values of t, q must be in that set too,

which is a contradiction. So in fact every geodesic can be extended to R.

Next we assume that every geodesic can be extended to all of R and

show that every divergent curve has unbounded length. Let α be a di-

vergent curve with bounded length. Then we have for any k > 0 that

limn→∞

∫ n+k

n
|α′(t)| dt = 0 — that is, points on α get arbitrarily close to

each other, so because R
3 is complete (in the Cauchy sense) α has a limit

point q in R
3. q cannot lie on S, because otherwise (the image under a chart

of) a closed ball around q would be a compact set that α doesn’t leave, and

we know that α is divergent. So q 6∈ S. I don’t quite see how to finish the

proof here, but if it’s true that if S is any surface (not just a complete one)

then S − {p} is not complete (in the geodesic sense), then this implies that

our surface is not complete. I’m not sure if that’s true though.

19.2 Image of S under the Gauss map

One very important consequence of the WERI representation is that the

Gauss map N : S → S2 is just the function g, with S2 the Riemann sphere;
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that is, if p : S2 → C∪{∞} is stereographic projection, then g = p◦N . Nizam

proved this in his notes; the proof is mostly a matter of working through the

algebra.

Lemma 19.2.1 (Osserman Lemma 8.4). A minimal surface S ⊂ R
3 that

is defined on the whole plane is either a plane or has an image under the

Gauss map that omits at most two points.

Proof. We can find a WERI representation unless φ1 = iφ2 and φ3 = 0,

but this means that x3 is constant so that S is a plane. Otherwise, g is

meromorphic in the entire plane, so by Picard’s Theorem it takes on all

values with at most two exceptions or is constant; so the Gauss map either

takes on all values except for maybe two or is constant, and the latter case

is a plane.

Theorem 19.2.2 (Osserman Theorem 8.1). Let S be a complete regular

minimal surface in R
3. Then S is a plane or the image of S under N is

dense in the sphere.

Proof. If the image is not everywhere dense then it omits a neighborhood

of some point, which without loss of generality we can assume to be N =

(0, 0, 1). If we can prove that x is defined on the entire plane, then by the

previous lemma we have our result. I do not entirely understand the proof,

but it involves finding a divergent path of bounded length.

We note that this implies Bernstein’s Theorem, since a nonparametric

minimal surface misses the entire bottom half of the sphere. So how many

points can we miss?

Theorem 19.2.3 (Osserman Theorem 8.3). Let E be an arbitrary set

of k ≤ 4 points on the unit sphere. Then there exists a complete regular

minimal surface in R
3 whose image under the Gauss map omits precisely the

set E.
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Proof. We can assume (by rotation) that E contains the north pole N =

(0, 0, 1). If in fact E = {N}, then we can take f(ζ) = 1 and g(ζ) = ζ, which

clearly obey the properties that f and g must (as they are both analytic);

since g takes on all values in C, N must take on all values of S2−{N} by in-

verse stereographic projection. (This is called Enneper’s surface.) Otherwise

let the points of E − {N} correspond to points wm ∈ C under stereographic

projection. Let

f(ζ) =
1∏

(ζ − wm)
, g(ζ) = ζ

and use WERI with the domain C − {w1, . . . , wk−1}. Clearly g takes on all

values except for the points wm, so the image of the Gauss map omits only

the values in E. f and g are both analytic (since the points where it looks

like f would have poles are not in the domain). It remains to show that

the surface is complete. We can show that in general the path length of a

curve C equals
∫

C
1
2
|f |(1 + |g|2)|dζ|. The only way a path can be divergent

here is if it tends towards ∞ or one of the points wm; in the former case

the degree of |f |(1 + |g|2) is at least −1 (because there are at most three

terms on the bottom of f), so it becomes unbounded; in the latter case g

goes to a constant and |f | becomes unbounded, so every divergent curve has

unbounded length and the surface is complete.

It has been proven by Xavier (see p 149 of Osserman) that no more than

six directions can be omitted, and as of the publication of Osserman it is not

known whether five or six directions can be omitted.

19.3 Gauss curvature of minimal surfaces

Nizam showed that the Gauss curvature of a minimal surface depends only

on its first fundamental form as K = − 1
2g11

∆(ln g11); doing the appropriate

calculations (starting with g11 = 2|φ|2 shows that we can write it in terms of

134



f and g as

K = −
(

4|g′|
|f |(1 + |g|2)2

)2

This implies that the Gauss curvature of a minimal surface is non-positive

everywhere (which is not surprising, since K = k1k2 = −k2
1). It also implies

that it can have only isolated zeros unless S is a plane. This is because K is

zero precisely when the analytic (according to Osserman, though I don’t see

why) function g′ has zeros, which is either isolated or everywhere. But if g′

is identically zero, then g is constant, so N is constant, so S is a plane.

Consider, for an arbitrary minimal surface in R
3, the following sequence

of mappings:

D
x(ζ)−−→ S

N−→ S2 p−→ C

where p is stereographic projection onto the w-plane. The composition of all

of these maps is g, as we have seen. Given a differentiable curve ζ(t) in D,

if s(t) is the arc length of its image on S, then (as mentioned above)

ds

dt
=

1

2
|f |(1 + |g|2)|dζ

dt
|

The arc length of the image in the w-plane is simply

abs
dw

dt
= |g′(ζ)||dζ

dt
|

because the composed map is g. If σ(t) is arc length on the sphere, then by

computation on the definition of stereographic projection we can show that

dσ

dt
=

2

1 + |w|2 |
dw

dt
|

(note that |w| here is the same as |g|. So dividing through we find that

dσ
dt
ds
dt

=
4|g′|

|f |(1 + |g|2)2
=

√
|K|
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So there is a natural definition of Gauss curvature in terms of the Gauss map.

We define the total curvature of a surface to be the integral
∫∫

K. We

can show that this is in fact equal to the negative of spherical area of the

image under the Gauss map, counting multiple coverings multiply.

19.4 Complete manifolds that are isometric

to compact manifolds minus points

Theorem 19.4.1 (Osserman 9.1). Let M be a complete Riemannian 2-

manifold with K ≤ 0 everywhere and
∫∫

|K| < ∞. Then there exists a

compact 2-manifold M̂ and a finite set P ⊂ M̂ such that M is isometric to

M̂ − P .

(Proof not given.)

Lemma 19.4.2 (Osserman 9.5). Let x define a complete regular minimal

surface S in R
3. If the total curvature of Sis finite, then the conclusion of the

previous theorem holds and the function g = p ◦N extends to a meromorphic

function on M̂ .

Proof. We already know that K ≤ 0. This implies that
∫∫

|K| = |
∫∫

K|, the

absolute value of the total curvature, which is finite. So the previous theorem

holds. The only way that g could fail to extend is if it has an essential

singularity at a point of P , but that would cause it to assume (almost) every

value infinitely often, which would imply that the spherical area of the image

of the Gauss map is infinite, which contradicts our assumption of finite total

curvature.

Theorem 19.4.3 (Osserman 9.2). Let S be a complete minimal surface

in R
3. Then the total curvature of S is −4πm for a nonnegative integer m,

or −∞.
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Proof. Since K ≤ 0, either
∫∫

K diverges to −∞, or it (the total curvature)

is finite. Because K is preserved by isometries, we apply the previous lemma

and see that the total curvature is the negative of the spherical area of the

image under g of M̂ − P . Because g is meromorphic, it is either constant

or takes on each value a fixed number of times m. So either the image is a

single point (so the total curvature is −4π0) or an m-fold cover of the sphere

(so the total curvature is −4πm).
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