Chapter 18

Weierstrass-Enneper Representations

18.1 Weierstrass-Enneper Representations of Minimal Surfaces

Let M be a minimal surface defined by an isothermal parameterization $x(u, v)$. Let $z=u+i v$ be the corresponding complex coordinate, and recall that

$$
\frac{\partial}{\partial z}=\frac{1}{2}\left(\frac{\partial}{\partial u}-i \frac{\partial}{\partial v}\right), \frac{\partial}{\partial \bar{z}}=\frac{1}{2}\left(\frac{\partial}{\partial u}+i \frac{\partial}{\partial v}\right)
$$

Since $u=1 / 2(z+\bar{z})$ and $v=-i / 2(z-\bar{z})$ we may write

$$
x(z, \bar{z})=\left(x^{1}(z, \bar{z}), x^{2}(z, \bar{z}), x^{3}(z, \bar{z})\right)
$$

Let $\phi=\frac{\partial x}{\partial z}, \phi^{i}=\frac{\partial x^{i}}{\partial z}$. Since M is minimal we know that ϕ^{i} s are complex analytic functions. Since x is isothermal we have

$$
\begin{align*}
\left(\phi^{1}\right)^{2}+\left(\phi^{2}\right)^{2}+\left(\phi^{3}\right)^{2} & =0 \tag{18.1}\\
\left(\phi^{1}+i \phi^{2}\right)\left(\phi^{1}-i \phi^{2}\right) & =-\left(\phi^{3}\right)^{2} \tag{18.2}
\end{align*}
$$

Now if we let $f=\phi^{1}-i \phi^{2}$ and $g=\phi^{3} /\left(\phi^{1}-i \phi^{2}\right)$ we have

$$
\phi^{1}=1 / 2 f\left(1-g^{2}\right), \phi^{2}=i / 2 f\left(1+g^{2}\right), \phi^{3}=f g
$$

Note that f is analytic and g is meromorphic. Furthermore $f g^{2}$ is analytic since $f g^{2}=-\left(\phi^{1}+i \phi^{2}\right)$. It is easy to verify that any ϕ satisfying the above equations and the conditions of the preceding sentence determines a minimal surface. (Note that the only condition that needs to be checked is isothermality.) Therefore we obtain:

Weierstrass-Enneper Representation I If f is analytic on a domain D, g is meromorphic on D and $f g^{2}$ is analytic on D, then a minimal surface is defined by the parameterization $x(z, \bar{z})=\left(x^{1}(z, \bar{z}), x^{2}(z, \bar{z}), x^{3}(z, \bar{z})\right.$, where

$$
\begin{align*}
& x^{1}(z, \bar{z})=\operatorname{Re} \int f\left(1-g^{2}\right) d z \tag{18.3}\\
& x^{2}(z, \bar{z})=\operatorname{Re} \int i f\left(1+g^{2}\right) d z \tag{18.4}\\
& x^{3}(z, \bar{z})=\operatorname{Re} \int f g d z \tag{18.5}
\end{align*}
$$

Suppose in WERI g is analytic and has an inverse function g^{-1}. Then we consider g as a new complex variable $\tau=g$ with $d \tau=g^{\prime} d z$ Define $F(\tau)=f / g^{\prime}$ and obtain $F(\tau) d \tau=f d z$. Therefore, if we replace g with τ and $f d z$ with $F(\tau) d \tau$ we get

Weierstrass-Enneper Representation II For any analytic function $F(\tau)$, a minimal surface is defined by the parameterization $x(z, \bar{z})=\left(x^{1}(z\right.$, overline $\left.z), x^{2}(z, \bar{z}), x^{3}(z, \bar{z})\right)$,
where

$$
\begin{align*}
& x^{1}(z, \bar{z})=\operatorname{Re} \int F(\tau)\left(1-\tau^{2}\right) d z \tag{18.6}\\
& x^{2}(z, \bar{z})=\operatorname{Re} \int i F(\tau)\left(1+\tau^{2}\right) d z \tag{18.7}\\
& x^{3}(z, \bar{z})=\operatorname{Re} \int F(\tau) \tau d z \tag{18.8}
\end{align*}
$$

This representation tells us that any analytic function $F(\tau)$ defines a minimal surface.
class exercise Find the WERI of the helicoid given in isothermal coordinates (u, v)

$$
x(u, v)=(\sinh u \sin v,-\sinh u \cos v,-v)
$$

Find the associated WERII. (answer: $i / 2 \tau^{2}$) Show that $F(\tau)=1 / 2 \tau^{2}$ gives rise to catenoid. Show moreover that $\tilde{\phi}=-i \phi$ for conjugate minimal surfaces x and \tilde{x}.

Notational convention We have two F s here: The F of the first fundamental form and the F in WERII. In order to avoid confusion well denote the latter by T and hope that Oprea will not introduce a parameter using the same symbol. Now given a surface $x(u, v)$ in R^{3} with $F=0$ we make the following observations:
i. x_{u}, x_{v} and $N(u, v)$ constitute an orthogonal basis of R^{3}.
ii. N_{u} and N_{v} can be written in this basis coefficients being the coefficients of matrix $d N p$
iii. $x_{u} u, x_{v} v$ and $x_{u} v$ can be written in this basis. One should just compute the dot products $\left\langle x_{u u}, x_{u}\right\rangle,\left\langle x_{u u}, x_{v}\right\rangle,\left\langle x_{u u}, N\right\rangle$ in order to represent $x_{u u}$ in this basis. The same holds for $x_{u v}$ and $x_{v v}$. Using the above ideas one gets the
following equations:

$$
\begin{align*}
x_{u u} & =\frac{E_{u}}{2 E} x_{u}-\frac{E_{v}}{2 G}+e N \tag{18.9}\\
x_{u v} & =\frac{E_{v}}{2 E} x_{u}+\frac{G_{v}}{2 G}+f N \tag{18.10}\\
x_{v v} & =\frac{-G_{u}}{2 E} x_{u}+\frac{G_{v}}{2 G}+g N \tag{18.11}\\
N_{u} & =-\frac{e}{E} x_{u}-\frac{f}{G} x_{v} \tag{18.12}\\
N_{v} & =-\frac{f}{E} x_{u}-\frac{g}{G} x_{v} \tag{18.13}
\end{align*}
$$

Now we state the Gausss theorem egregium:

Gausss Theorem Egregium The Gauss curvature K depends only on the metric $E, F=0$ and G :

$$
K=-\frac{1}{2 \sqrt{E G}}\left(\frac{\partial}{\partial v}\left(\frac{E_{v}}{\sqrt{E G}}\right)+\frac{\partial}{\partial u}\left(\frac{G_{u}}{\sqrt{E G}}\right)\right)
$$

This is an important theorem showing that the isometries do not change the Gaussian curvature.
proof If one works out the coefficient of x_{v} in the representation of $x_{u u v}-$ $x_{u v u}$ one gets:

$$
\begin{align*}
& x_{u u v}=[] x_{u}+\left[\frac{E_{u} G_{u}}{4 E G}-\left(\frac{E_{v}}{2 G}\right)_{v}-\frac{E_{v} G_{v}}{4 G^{2}}-\frac{e g}{G}\right] x_{v}+[] N \tag{18.14}\\
& x_{u v u}=[] x_{u}+\frac{E_{v}}{2 E} x_{u u}+\left(\frac{G_{u}}{2 G}\right)_{u} x_{u} v+f_{u} N+f N_{u} \tag{18.15}\\
& x_{u v u}=[] x_{u}+\left[-\frac{E_{v} E_{v}}{4 E G}+\left(\frac{G_{u}}{2 G}\right)_{u}+\frac{G_{u} G_{u}}{4 G^{2}}-\frac{f^{2}}{G}\right] x_{v}+[] U \tag{18.16}
\end{align*}
$$

Because the x_{v} coefficient of $x_{u u v}-x_{u v u}$ is zero we get:

$$
0=\frac{E_{u} G_{u}}{4 E G}-\left(\frac{E_{v}}{2 G}\right)_{v}-\frac{E_{v} G_{v}}{4 G^{2}}+\frac{E_{v} E_{v}}{4 E G}-\left(\frac{G_{u}}{2 G}\right)_{u}-\frac{G u G u}{4 G^{2}}-\frac{e g-f^{2}}{G}
$$

dividing by E, we have

$$
\frac{e g-f^{2}}{E G}=\frac{E_{u} G_{u}}{4 E^{2} G}-\frac{1}{E}\left(\frac{E_{v}}{2 G}\right)_{v}-\frac{E_{v} G_{v}}{4 E G^{2}}+\frac{E_{v} E_{v}}{4 E^{2} G}-\frac{1}{E}\left(\frac{G_{u}}{2 G}\right)_{u}-\frac{G_{u} G_{u}}{4 E G^{2}}
$$

Thus we have a formula for K which does not make explicit use of N :

$$
K=-\frac{1}{2 \sqrt{E G}}\left(\frac{\partial}{\partial v}\left(\frac{\partial E_{v}}{\partial \sqrt{E G}}\right)+\frac{\partial}{\partial u}\left(\frac{G_{u}}{\sqrt{E G}}\right)\right)
$$

Now we use Gausss theorem egregium to find an expression for K in terms of T of WERII

$$
\begin{align*}
K & =-\frac{1}{2 \sqrt{E G}}\left(\frac{\partial}{\partial v}\left(\frac{E_{v}}{\sqrt{E G}}\right)+\frac{\partial}{\partial u}\left(\frac{G_{u}}{\sqrt{E G}}\right)\right) \tag{18.17}\\
& =-\frac{1}{2 E}\left(\frac{\partial}{\partial v}\left(\frac{E_{v}}{E}\right)+\frac{\partial}{\partial u}\left(\frac{E_{u}}{E}\right)\right) \tag{18.18}\\
& =-\frac{1}{2 E} \Delta(\ln E) \tag{18.19}
\end{align*}
$$

Theorem The Gauss curvature of the minimal surface determined by the WER II is

$$
K=\frac{-4}{|T|^{2}(1+u 2+v 2)^{4}}
$$

where $\tau=u+i v$. That of a minimal surface determined by WER I is:

$$
K=\frac{4\left|g^{\prime}\right|^{2}}{|f|^{2}\left(1+|g|^{2}\right)^{4}}
$$

In order to prove this thm one just sees that $E=2|\phi|^{2}$ and makes use of the equation (20). Now we prove a proposition that will show WERs importance later.

Proposition Let M be a minimal surface with isothermal parameterization $x(u, v)$. Then the Gauss map of M is a conformal map.
proof In order to show N to be conformal we only need to show $\left|d N p\left(x_{u}\right)\right|=$
$\rho(u, v)\left|x_{u}\right|,\left|d N p\left(x_{v}\right)\right|=\rho(u, v)\left|x_{v}\right|$ and $d N p\left(x_{u}\right) \cdot d N p\left(x_{v}\right)=\rho^{2} x_{u} \cdot x_{v}$ Latter is trivial because of the isothermal coordinates. We have the following eqns for $d N p\left(x_{u}\right)$ and $d N p\left(x_{v}\right)$

$$
\begin{align*}
& d N p\left(x_{u}\right)=N_{u}=-\frac{e}{E} x_{u}-\frac{f}{G} x_{v} \tag{18.20}\\
& d N p\left(x_{v}\right)=N_{v}=-\frac{f}{E} x_{u}-\frac{g}{G} x_{v} \tag{18.21}
\end{align*}
$$

By minimality we have $e+g=0$. Using above eqns the Gauss map is conformal with scaling factor $\frac{\sqrt{e^{2}+f^{2}}}{E}=\sqrt{|K|}$ It turns out that having a conformal Gauss map almost characterizes minimal surfaces:

Proposition Let M be a surface parameterized by $x(u, v)$ whose Gauss $\operatorname{map} N: M \longrightarrow S^{2}$ is conformal. Then either M is (part of) sphere or M is a minimal surface.
proof We assume that the surface is given by an orthogonal parameterization $(\mathrm{F}=0)$ Since $x_{u} \cdot x_{v}=0$ by conformality of $N N_{u} \cdot N_{v}=0$ using the formulas (13) (14) one gets $f(G e+E g)=0$ therefore either $e=0$ (at every point) or $G e+e G=0$ (everywhere). The latter is minimal surface equality. If the surface is not minimal then $f=0$. Now use $f=0$, confomality and (13), (14) to get

$$
\frac{e^{2}}{E}=N_{u} \cdot N_{u}=\rho^{2} E, \frac{g^{2}}{G}=N_{v} \cdot N_{v}=\rho^{2} G
$$

Multiplying across each equation produces

$$
\frac{e^{2}}{E^{2}}=\frac{g^{2}}{G^{2}} \Rightarrow \frac{e}{G}= \pm \frac{g}{G}
$$

The last equation with minus sign on LHS is minimal surface equation so we may just consider the case $e / E=g / G=k$. Together with $f=0$ we have $N_{u}=-k x_{u}$ and $N_{v}=-k x_{v}$ this shows that x_{u} and x_{v} are eigenvectors of the differential of the Gauss map with the same eigenvalue. Therefore any
point on M is an umbilical point. The only surface satisfying this property is sphere so were done.

Steographic Projection: $S t: S^{2}-N \longrightarrow R^{2}$ is given by $S t(x, y, z)=$ $(x /(1-z), y /(1-z), 0)$ We can consider the Gauss map as a mapping from the surface to $C \cup \infty$ by taking its composite with steographic projection.Note that the resulting map is still conformal since both of Gauss map and Steographic are conformal. Now we state a thm which shows that WER can actually be attained naturally:

Theorem Let M be a minimal surface with isothermal parameterization $x(u, v)$ and WER (f, g). Then the Gauss map of $M, G: M \longrightarrow C \cup \infty$ can be identified with the meromorphic function g.
proof Recall that

$$
\phi^{1}=\frac{1}{2} f\left(1-g^{2}\right), \phi^{2}=i 2 f\left(1+g^{2}\right), \phi^{3}=f g
$$

We will describe the Gauss map in terms of ϕ^{1}, ϕ^{2} and ϕ^{3}.

$$
\begin{align*}
x_{u} \times x_{v} & =\left(\left(x_{u} \times x_{v}\right)^{1},\left(x_{u} \times x_{v}\right)^{2},\left(x_{u} \times x_{v}\right)^{3}\right) \tag{18.22}\\
& =\left(x_{u}^{2} x_{v}^{3}-x_{u}^{3} x_{v}^{2}, x_{u}^{3} x_{v}^{1}-x_{u}^{1} x_{v}^{3}, x_{u}^{1} x_{v}^{2}-x_{u}^{2} x_{v}^{1}\right) \tag{18.23}
\end{align*}
$$

and consider the first component $x_{u}^{2} x_{v}^{3}-x_{u}^{3} x_{v}^{2}$ we have

$$
x_{u}^{2} x_{v}^{3}-x_{u}^{3} x_{v}^{2}=4 \operatorname{Im}\left(\phi^{2} \bar{\phi}^{3}\right)
$$

Similarly $\left(x_{u} \times x_{v}\right)^{2}=4 \operatorname{Im}\left(\phi^{2} \bar{\phi}^{1}\right)$ and $\left(x_{u} \times x_{v}\right)^{3}=4 \operatorname{Im}\left(\phi^{1} \overline{\phi^{2}}\right)$ Hence we obtain

$$
x_{u} \times x_{v}=4 \operatorname{Im}\left(\phi^{2} \overline{\phi^{3}}, \phi^{3} \overline{\phi^{1}}, \phi^{1} \overline{\phi^{2}}\right)=2 \operatorname{Im}(\phi \times \bar{\phi})
$$

Now since $x(u, v)$ is isothermal $\left|x_{u} \times x_{v}\right|=\left|x_{u}\right|\left|x_{v}\right|=E=2|\phi|^{2}$. Therefore we have

$$
N=\frac{x_{u} \times x_{v}}{\left|x_{u} \times x_{v}\right|}=\frac{\phi \times \bar{\phi}}{|\phi|^{2}}
$$

Now

$$
\begin{align*}
G(u, v) & =\operatorname{St}(N(u, v)) \tag{18.24}\\
& =\operatorname{St}\left(\frac{x_{u} \times x_{v}}{\left|x_{u} \times x_{v}\right|}\right) \tag{18.25}\\
& =\operatorname{St}\left(\frac{\phi \times \bar{\phi}}{|\phi|^{2}}\right) \tag{18.26}\\
& =\operatorname{St}\left(2 \operatorname{Im}\left(\phi^{2} \overline{\phi^{3}}, \phi^{3} \overline{\phi^{1}}, \phi^{1} \overline{\phi^{2}}\right)|\phi|^{2}\right) \tag{18.27}\\
& =\left(\frac{2 \operatorname{Im}\left(\phi^{2} \overline{\phi^{3}}\right)}{|\phi|^{2}-2 \operatorname{Im}\left(\phi^{1} \overline{\phi^{2}}\right)}, \frac{2 \operatorname{Im}\left(\phi^{3} \overline{\phi^{1}}\right)}{|\phi|^{2}-2 \operatorname{Im}\left(\phi^{1} \overline{\phi^{2}}\right)}, 0\right) \tag{18.28}
\end{align*}
$$

Identifying (x, y) in R^{2} with $x+i y \in C$ allows us to write

$$
G(u, v)=\frac{2 \operatorname{Im}\left(\phi^{2} \overline{\phi^{3}}\right)+2 i \operatorname{Im}\left(\phi^{3} \overline{\phi^{1}}\right)}{|\phi|^{2}-2 \operatorname{Im}\left(\phi^{1} \overline{\phi^{2}}\right)}
$$

Now its simple algebra to show that

$$
G(u, v)=\frac{\phi^{3}}{\phi^{1}-i \phi^{2}}
$$

But that equals to g so were done.

