
Chapter 17

Complete Minimal Surfaces

Reading:

• Osserman [7] Pg. 49-52,

• Do Carmo [2] Pg. 325-335.

17.1 Complete Surfaces

In order to study regular surfaces globally, we need some global hypothesis

to ensure that the surface cannot be extended further as a regular surface.

Compactness serves this purpose, but it would be useful to have a weaker

hypothesis than compctness which could still have the same effect.

Definition 17.1.1. A regular (connected) surface S is said to be extendable

if there exists a regular (connected) surface S̄ such that S ⊂ S̄ as a proper

subset. If there exists no such S̄, then S is said to be nonextendable.

Definition 17.1.2. A regular surface S is said to be complete when for

every point p ∈ S, any parametrized geodesic γ : [0, ǫ) → S of S, starting

from p = γ(0), may be extended into a parametrized geodesic γ̄ : R → S,

defined on the entire line R.
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Example 11 (Examples of complete/non-complete surfaces). The

following are some examples of complete/non-complete surfaces.

1. The plane is a complete surface.

2. The cone minus the vertex is a noncomplete surface, since by extending

a generator (which is a geodesic) sufficiently we reach the vertex, which

does not belong to the surface.

3. A sphere is a complete surface, since its parametrized geodesics (the

great circles) may be defined for every real value.

4. The cylinder is a complete surface since its geodesics (circles, lines and

helices) can be defined for all real values

5. A surface S − {p} obtained by removing a point p from a complete

surface S is not complete, since there exists a geodesic of S − {p} that

starts from a point in the neighborhood of p and cannot be extended

through p.

Figure 17.1: A geodesic on a cone will eventually approach the vertex

Proposition 17.1.3. A complete surface S is nonextendable.
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Proof. Let us assume that S is extendable and obtain a contradiction. If

S is extendable, then there exists a regular (connected) surface S̄ such that

S ⊂ S̄. Since S is a regular surface, S is open in S̄. The boundary Bd(S) of

S is nonempty, so there exists a point p ∈ Bd(S) such that p /∈ S.

Let V̄ ⊂ S̄ be a neighborhood of p in S̄ such that every q ∈ V̄ may be

joined to p by a unique geodesic of S̄. Since p ∈ Bd(S), some q0 ∈ V̄ belongs

to S. Let γ̄ : [0, 1] → S̄ be a geodesic of S̄, with γ̄(0) = p and γ̄(1) = q0.

It is clear that α : [0, ǫ) → S, given by α(t) = γ̄(1 − t), is a geodesic of S,

with α(0) = q0, the extension of which to the line R would pass through p

for t = 1. Since p /∈ S, this geodesic cannot be extended, which contradicts

the hypothesis of completness and concludes the proof.

Proposition 17.1.4. A closed surface S ⊂ R3 is complete

Corollary 17.1.5. A compact surface is complete.

Theorem 17.1.6 (Hopf-Rinow). Let S be a complete surface. Given two

points p, q ∈ S, there exists a nimimal geodesic joining p to q.

17.2 Relationship Between Conformal and Complex-

Analytic Maps

In surfaces, conformal maps are basically the same as complex-analytic maps.

For this section, let U ⊂ C be a open subset, and z ∈ U .

Definition 17.2.1. A function f : U → C is conformal if the map dfz

preserves angle and sign of angles.

Proposition 17.2.2. A function f : U → C is conformal at z ∈ U iff f is

a complex-analytic function at z and f ′(z) 6= 0.

Proof. Let B be the matrix representation of dfz in the usual basis. Then f

is conformal ⇔ B = cA where A ∈ SO(2) and c > 0. Thus

BBT = c2I ⇔ BT = (det B)B−1 (17.1)
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Let z = x + iy and f(z) = f(x, y) = u(x, y) + iv(x, y), then

B =

(
ux vx

uy vy

)
(17.2)

where uy = ∂u
∂y

. However, from Eq. 17.1, we have

(
ux vx

uy vy

)
=

(
vy −uy

−vx ux

)
(17.3)

which implies the Cauchy-Riemann equations

ux = vy, uy = −vx. (17.4)

Thus f is complex-analytic.

17.3 Riemann Surface

Definition 17.3.1. A Riemann Surface M is a 1-dim complex analytic

manifold, i.e. each p ∈ M has a neighborhood which is homeomorphic to a

neighborhood in C, and the transition functions are complex analytic.

In order to study Riemann surface, one needs to know the basic of har-

monic and subharmonic functions.

Table 17.1: The analogues of harmonic and subharmonic functions on R
R C

Linear Harmonic
Convex subharmonic

Definition 17.3.2. A function h : R → R is harmonic iff it is in the form

h(x) = ax + b, where a, b ∈ R. In other words, ∆h = 0 where ∆ = d2

dx2 .
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Figure 17.2: A graphical representation of a harmonic function h and a
subhamonic function g in R.

Definition 17.3.3. A function g : R → R is convex if for every interval

[c, d] ⊂ R, g(x) < h(x) for x ∈ (c, d) where h is the linear function such that

h(c) = g(c) and h(d) = g(d).

Definition 17.3.4 (Second definition of convex functions). If g : R →
R is convex and g ≤ h̃ on (c, d) for h̃ a harmonic function, then either

g < h̃ or g ≡ h̃ there.

Subharmonic functions on C are just the equivalents of convex functions

on mathbbR.

Definition 17.3.5. A function g : M → R is subharmonic on a Riemann

surface M if

1. g is constant.

2. For any domain D and any harmonic functions h : D → R, if g ≤ h

on D, then g < h on D or g = h on D.

3. The difference g − h satisfies the maximum principle on D, i.e. g − h

cannot have a maximum on D unless it is constant.
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Definition 17.3.6. A Riemann surface M is hyperbolic if it supports a

non-constant negative subharmonic function.

Note: If M is compact, then all constant functions on M that satisfy the

maximum principle are constant. Therefore M is not hyperbolic.

Definition 17.3.7. A Riemann surface M is parabolic if it is not compact

nor hyperbolic.

Theorem 17.3.8 (Koebe-Uniformization Theorem). If M is a simply

connected Riemann surface, then

1. if M is compact, M is conformally equivalent to the sphere.

2. if M is parabolic, M is conformally equivalent to the complex plane.

3. if M is hyperbolic, M is conformally equivalent to the unit disc on the

complex plane. But note that the disc has a hyperbolic metric

ds2 =
dx2 + dy2

(1 − x2 − y2)2
. (17.5)

Figure 17.3: The Poincaré Hyperbolic Disk [9]
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Table 17.2: Categorization of Riemann surfaces
Type Conformally equivalent to Remark

Hyperbolic sphere supports a non-constant negative
subharmonic function

Compact C

Parabolic D = {z ∈ C||z| < 1} Not hyperbolic and not compact

17.4 Covering Surface

Definition 17.4.1. A covering surface of a topological 2-manifold M is a

topological 2-manifold M̃ and a map

ρ : M̃ → M (17.6)

such that ρ is a local homeomorphic map.
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Figure 17.4: Covering surfaces

Definition 17.4.2. A covering transformation of M̃ is a homeomorphism

g : M̃ → M̃ such that ρ ◦ g = ρ

This forms a group G.
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Proposition 17.4.3. Every surface (2-manifold) M has a covering space

(M̂, ρ) such that M̃ is simply connected, and

M̂/G ∼= M (17.7)
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