Chapter 17

Complete Minimal Surfaces

Reading:

- Osserman [7] Pg. 49-52,
- Do Carmo [2] Pg. 325-335.

17.1 Complete Surfaces

In order to study regular surfaces globally, we need some global hypothesis to ensure that the surface cannot be extended further as a regular surface. Compactness serves this purpose, but it would be useful to have a weaker hypothesis than competeness which could still have the same effect.

Definition 17.1.1. A regular (connected) surface S is said to be **extendable** if there exists a regular (connected) surface \overline{S} such that $S \subset \overline{S}$ as a proper subset. If there exists no such \overline{S} , then S is said to be **nonextendable**.

Definition 17.1.2. A regular surface S is said to be complete when for every point $p \in S$, any parametrized geodesic $\gamma : [0, \epsilon) \to S$ of S, starting from $p = \gamma(0)$, may be extended into a parametrized geodesic $\bar{\gamma} : \mathbf{R} \to S$, defined on the entire line \mathbf{R} . **Example 11 (Examples of complete/non-complete surfaces).** The following are some examples of complete/non-complete surfaces.

- 1. The plane is a complete surface.
- 2. The cone minus the vertex is a noncomplete surface, since by extending a generator (which is a geodesic) sufficiently we reach the vertex, which does not belong to the surface.
- 3. A sphere is a complete surface, since its parametrized geodesics (the great circles) may be defined for every real value.
- 4. The cylinder is a complete surface since its geodesics (circles, lines and helices) can be defined for all real values
- 5. A surface $S \{p\}$ obtained by removing a point p from a complete surface S is not complete, since there exists a geodesic of $S - \{p\}$ that starts from a point in the neighborhood of p and cannot be extended through p.

Figure 17.1: A geodesic on a cone will eventually approach the vertex

Proposition 17.1.3. A complete surface S is nonextendable.

Proof. Let us assume that S is extendable and obtain a contradiction. If S is extendable, then there exists a regular (connected) surface \overline{S} such that $S \subset \overline{S}$. Since S is a regular surface, S is open in \overline{S} . The boundary Bd(S) of S is nonempty, so there exists a point $p \in Bd(S)$ such that $p \notin S$.

Let $\overline{V} \subset \overline{S}$ be a neighborhood of p in \overline{S} such that every $q \in \overline{V}$ may be joined to p by a unique geodesic of \overline{S} . Since $p \in \text{Bd}(S)$, some $q_0 \in \overline{V}$ belongs to S. Let $\overline{\gamma} : [0,1] \to \overline{S}$ be a geodesic of \overline{S} , with $\overline{\gamma}(0) = p$ and $\overline{\gamma}(1) = q_0$. It is clear that $\alpha : [0,\epsilon) \to S$, given by $\alpha(t) = \overline{\gamma}(1-t)$, is a geodesic of S, with $\alpha(0) = q_0$, the extension of which to the line \mathbf{R} would pass through pfor t = 1. Since $p \notin S$, this geodesic cannot be extended, which contradicts the hypothesis of completness and concludes the proof.

Proposition 17.1.4. A closed surface $S \subset \mathbb{R}^3$ is complete

Corollary 17.1.5. A compact surface is complete.

Theorem 17.1.6 (Hopf-Rinow). Let S be a complete surface. Given two points $p, q \in S$, there exists a nimimal geodesic joining p to q.

17.2 Relationship Between Conformal and Complex-Analytic Maps

In surfaces, conformal maps are basically the same as complex-analytic maps. For this section, let $U \subset \mathbf{C}$ be a open subset, and $z \in U$.

Definition 17.2.1. A function $f : U \to \mathbf{C}$ is conformal if the map df_z preserves angle and sign of angles.

Proposition 17.2.2. A function $f : U \to \mathbb{C}$ is conformal at $z \in U$ iff f is a complex-analytic function at z and $f'(z) \neq 0$.

Proof. Let B be the matrix representation of df_z in the usual basis. Then f is conformal $\Leftrightarrow B = cA$ where $A \in SO(2)$ and c > 0. Thus

$$BB^T = c^2 I \quad \Leftrightarrow \quad B^T = (\det B)B^{-1} \tag{17.1}$$

Let z = x + iy and f(z) = f(x, y) = u(x, y) + iv(x, y), then

$$B = \begin{pmatrix} u_x & v_x \\ u_y & v_y \end{pmatrix}$$
(17.2)

where $u_y = \frac{\partial u}{\partial y}$. However, from Eq. 17.1, we have

$$\begin{pmatrix} u_x & v_x \\ u_y & v_y \end{pmatrix} = \begin{pmatrix} v_y & -u_y \\ -v_x & u_x \end{pmatrix}$$
(17.3)

which implies the Cauchy-Riemann equations

$$u_x = v_y, \quad u_y = -v_x.$$
 (17.4)

Thus f is complex-analytic.

17.3 Riemann Surface

Definition 17.3.1. A **Riemann Surface** M is a 1-dim complex analytic manifold, i.e. each $p \in M$ has a neighborhood which is homeomorphic to a neighborhood in \mathbf{C} , and the transition functions are complex analytic.

In order to study Riemann surface, one needs to know the basic of harmonic and subharmonic functions.

Table 17.1: The analogues of harmonic and subharmonic functions on \mathbf{R}

$\mathbb R$	\mathbb{C}
Linear	Harmonic
Convex	subharmonic

Definition 17.3.2. A function $h : \mathbf{R} \to \mathbf{R}$ is harmonic iff it is in the form h(x) = ax + b, where $a, b \in \mathbf{R}$. In other words, $\Delta h = 0$ where $\Delta = \frac{d^2}{dx^2}$.

Figure 17.2: A graphical representation of a harmonic function h and a subhamonic function g in \mathbb{R} .

Definition 17.3.3. A function $g : \mathbf{R} \to \mathbf{R}$ is **convex** if for every interval $[c,d] \subset \mathbf{R}$, g(x) < h(x) for $x \in (c,d)$ where h is the linear function such that h(c) = g(c) and h(d) = g(d).

Definition 17.3.4 (Second definition of convex functions). If $g : \mathbf{R} \to \mathbf{R}$ is **convex** and $g \leq \tilde{h}$ on (c, d) for \tilde{h} a harmonic function, then either $g < \tilde{h}$ or $g \equiv \tilde{h}$ there.

Subharmonic functions on \mathbb{C} are just the equivalents of convex functions on *mathbbR*.

Definition 17.3.5. A function $g: M \to \mathbb{R}$ is subharmonic on a Riemann surface M if

- 1. g is constant.
- 2. For any domain D and any harmonic functions $h: D \to \mathbb{R}$, if $g \leq h$ on D, then g < h on D or g = h on D.
- 3. The difference g h satisfies the maximum principle on D, i.e. g h cannot have a maximum on D unless it is constant.

Definition 17.3.6. A Riemann surface M is hyperbolic if it supports a non-constant negative subharmonic function.

Note: If M is compact, then all constant functions on M that satisfy the maximum principle are constant. Therefore M is not hyperbolic.

Definition 17.3.7. A Riemann surface M is **parabolic** if it is not compact nor hyperbolic.

Theorem 17.3.8 (Koebe-Uniformization Theorem). If M is a simply connected Riemann surface, then

- 1. if M is compact, M is conformally equivalent to the sphere.
- 2. if M is parabolic, M is conformally equivalent to the complex plane.
- 3. if M is hyperbolic, M is conformally equivalent to the unit disc on the complex plane. But note that the disc has a hyperbolic metric

$$ds^{2} = \frac{dx^{2} + dy^{2}}{(1 - x^{2} - y^{2})^{2}}.$$
(17.5)

Figure 17.3: The Poincaré Hyperbolic Disk [9]

Type	Conformally equivalent to	Remark
Hyperbolic	sphere	supports a non-constant negative
		subharmonic function
Compact	\mathbb{C}	
Parabolic	$D = \{ z \in \mathbb{C} z < 1 \}$	Not hyperbolic and not compact

Table 17.2: Categorization of Riemann surfaces

17.4 Covering Surface

Definition 17.4.1. A covering surface of a topological 2-manifold M is a topological 2-manifold \tilde{M} and a map

$$\rho: \tilde{M} \to M \tag{17.6}$$

such that ρ is a local homeomorphic map.

Figure 17.4: Covering surfaces

Definition 17.4.2. A covering transformation of \tilde{M} is a homeomorphism $g: \tilde{M} \to \tilde{M}$ such that $\rho \circ g = \rho$

This forms a group G.

Proposition 17.4.3. Every surface (2-manifold) M has a covering space (\hat{M}, ρ) such that \tilde{M} is simply connected, and

$$\hat{M}/G \cong M \tag{17.7}$$