Chapter 15

Bernstein's Theorem

15.1 Minimal Surfaces and isothermal parametrizations

Note: This section will not be gone over in class, but it will be referred to.
Lemma 15.1.1 (Osserman 4.4). Let S be a minimal surface. Every regular point p of S has a neighborhood in which there exists of reparametrization of S in terms of isothermal parameters.

Proof. By a previous theorem (not discussed in class) there exists a neighborhood of the regular point which may be represented in a non-parametric form. Then we have that $x\left(x_{1}, x_{2}\right)=\left(x_{1}, x_{2}, f_{3}\left(x_{1}, x_{2}\right), \ldots, f_{n}\left(x_{1}, x_{2}\right)\right)$. Defining $f=\left(f_{3}, f_{4}, \ldots, f_{n}\right)$, we let $p=\frac{\partial f}{\partial x_{1}}, q=\frac{\partial f}{\partial x_{2}}, r=\frac{\partial^{2} f}{\partial x_{1}^{2}}, s=\frac{\partial^{2} f}{\partial x_{1} \partial x_{2}}$, and $t=\frac{\partial^{t} f}{\partial x_{2}^{2}}$. Last, we let $W=\sqrt{\operatorname{det} g_{i j}}=\sqrt{1+|p|^{2}+|q|^{2}+|p|^{2}|q|^{2}-(p \cdot q)^{2}}$. We then have (from last lecture)

$$
\begin{aligned}
& \frac{\partial}{\partial x_{1}}\left(\frac{1+|q|^{2}}{W}\right)=\frac{\partial}{\partial x_{2}}\left(\frac{p \cdot q}{W}\right) \\
& \frac{\partial}{\partial x_{1}}\left(\frac{p \cdot q}{W}\right)=\frac{\partial}{\partial x_{2}}\left(\frac{1+|q|^{2}}{W}\right)
\end{aligned}
$$

Then there exists a function $F\left(x_{1}, x_{2}\right)$ such that $\frac{\partial F}{\partial x_{1}}=\frac{1+|p|^{2}}{W}$ and $\frac{\partial F}{\partial x_{2}}=\frac{p \cdot q}{W}$. Why? Think back to 18.02 and let $V=\left(\frac{1+|p|^{2}}{W}, \frac{p \cdot q}{W}, 0\right)$ be a vector field in \mathbb{R}^{3}; then $|\nabla \times V|=\frac{\partial}{\partial x_{2}} \frac{1+|p|^{2}}{W}-\frac{\partial}{\partial x_{1}} \frac{p \cdot q}{W}=0$, so there exists a function F such that $\nabla F=V$, which is the exact condition we wanted (once we get rid of the third dimension). Similarly there exists a function $G\left(x_{1}, x_{2}\right)$ with $\frac{\partial G}{\partial x_{1}}=\frac{p \cdot q}{W}$ and $\frac{\partial G}{\partial x_{2}}=\frac{\partial 1+|q|^{2}}{\partial W}$.

We now define $\xi\left(x_{1}, x_{2}\right)\left(x_{1}+F\left(x_{1}, x_{2}\right), x_{2}+G\left(x_{1}, x_{2}\right)\right)$. We then find that $\frac{\partial \xi_{1}}{\partial x_{1}}=1+\frac{1+|p|^{2}}{W}, \frac{\partial \xi_{2}}{\partial x_{2}}=1+\frac{1+|q|^{2}}{W}$, and $\frac{\partial \xi_{1}}{\partial x_{2}}=\frac{\partial \xi_{2}}{\partial x_{1}}=\frac{p \cdot q}{W}$. Then (recalling the defintion of W^{2}) we can find that the magnitude of the Jacobian $\frac{\partial\left(\xi_{1}, \xi_{2}\right)}{\partial\left(x_{1}, x\right)}$ is $2+\frac{2+|p|^{2}+|q|^{2}}{W}>0$. This implies that the transformation ξ has a local inverse \hat{x} at p. Judicial use of the inverse function theorem will show that with respect to the parameters ξ_{1} and $\xi_{2}, g_{11}=g_{22}$ and $g_{12}=0$, so these are isothermal coordinates; see Osserman p 32 for details.

We also have the following result:
Lemma 15.1.2 (Osserman 4.5). Let a surface S be defined by an isothermal parametrization $x(u)$, and let \widetilde{S} be a reparametrization of S defined by a diffeomorphism with matrix U. Then $\tilde{u_{1}}, \tilde{u_{2}}$ are isothermal parameters if and only if the map U is either conformal or anti-conformal.

Proof. For a map to be conformal or anti-conformal means that it preserves $|\theta|$, or alternatively that it preserves $\cos \theta$. (It also needs to be continuous enough that it isn't flipping the sign back and forth.) If U is a constant μ times an orthogonal matrix, then $\mu|v|=|U v|$ for all v since $\mu^{2}\langle v, v\rangle=$ $\langle U v, U v\rangle$; thus if θ is the angle between vectors v and w and θ^{\prime} is the angle between $U v$ and $U w$, we have that $\cos \theta=\frac{\mu^{2}\langle v, w\rangle}{\mu^{2}|v||w|}=\frac{\langle U v, U w\rangle}{|U v||U w|}=\cos \theta^{\prime}$. So for diffeomorphisms with matrix U, U being conformal or anti-conformal is equivalent to U being a constant multiple of an orthogonal matrix.

Now, since x is isothermal, we have that $g_{i j}=\lambda^{2} \delta_{i j}$ (where $\delta_{i j}$ is the Kronecker delta). By a theorem on page 5 about change of coordinates, we know that $\widetilde{G}=U^{T} G U=\lambda^{2} U^{T} U$. So $\tilde{u_{1}}, \tilde{u_{2}}$ is isothermal iff $\tilde{g}_{i j}=\tilde{\lambda}^{2} \delta_{i j}$,
which is to say that $I=\frac{\lambda^{2}}{\tilde{\lambda}^{2}} U^{T} U$, which is to say that $\frac{\tilde{\lambda}}{\lambda} U$ is orthogonal. But we have already shown that this is equivalent to U being conformal or anti-conformal.

15.2 Bernstein's Theorem: Some Preliminary Lemmas

The main goal of today is to prove Bernstein's Theorem, which has the nice corollary that in \mathbb{R}^{3}, the only minimal surface that is defined in nonparametric form on the entire x_{1}, x_{2} plane is a plane. This makes sense: the catenoid and helicoid are not going to give you nonparametric forms since no projection of them is injective, and Scherk's surface may be nonparametric but it's only defined on a checkerboard. We have a bunch of lemmas to work through first.

Lemma 15.2.1 (Osserman 5.1). Let $E: D \rightarrow \mathbb{R}$ be a C^{2} function on a convex domain D, and suppose that the Hessian matrix $\left(\frac{\partial^{2} E}{\partial x_{i} \partial x_{j}}\right)$ evaluated at any point is positive definite. (This means that the quadratic form it defines sends every nonzero vector to a positive number, or equivalently that it is symmetric with positive eigenvalues.) Define a mapping $\phi: D \rightarrow \mathbb{R}^{2}$ with $\phi\left(x_{1}, x_{2}\right)=\left(\frac{\partial E}{\partial x_{1}}\left(x_{1}, x_{2}\right), \frac{\partial E}{\partial x_{2}}\left(x_{1}, x_{2}\right)\right)\left(\right.$ since $\left.\frac{\partial E}{\partial x_{1}}: D \rightarrow \mathbb{R}\right)$. Let a and b be distinct points of D; then $(b-a) \cdot(\phi(b)-\phi(a))>0$.

Proof. Let $G(t)=E(t b+(1-t) a)=E\left(t b_{1}+(1-t) a_{1}, t b_{2}+(1-t) b_{2}\right)$ for $t \in[0,1]$. Then

$$
G^{\prime}(t)=\sum_{i=1}^{2}\left(\frac{\partial E}{\partial x_{i}}(t b+(1-t) a)\right)\left(b_{i}-a_{i}\right)
$$

(note that the $t b+(1-t) a$ here is the argument of $\frac{\partial E}{\partial x_{i}}$, not a multiplied
factor) and

$$
G^{\prime \prime}(t)=\sum_{i, j=1}^{2}\left(\frac{\partial^{2}}{\partial x_{i} \partial x_{j}}(t b+(1-t) a)\right)\left(b_{i}-a_{i}\right)\left(b_{j}-a_{j}\right)
$$

But this is just the quadratic form of $\left(\frac{\partial^{2} E}{\partial x_{i} \partial x_{j}}\right)$ evaluated at the point $t b+$ $(1-t) a$, applied to the nonzero vector $b-a$. By positive definiteness, we have that $G^{\prime \prime}(t)>0$ for $t \in[0,1]$. So $G^{\prime}(1)>G^{\prime}(0)$, which is to say that $\sum \phi(b)_{i}\left(b_{i}-a_{i}\right)>\sum \phi(a)_{i}\left(b_{i}-a_{i}\right)$, which is to say that $(\phi(b)-\phi(a)) \cdot(b-a)>$ 0 .

Lemma 15.2.2 (Osserman 5.2). Assume the hypotheses of Osserman Lemma 5.1. Define the map $z: D \rightarrow \mathbb{R}^{2}$ by $z_{i}\left(x_{1}, x_{2}\right)=x_{i}+\phi_{i}\left(x_{1}, x_{2}\right)$. Then given distinct points $a, b \in D$, we have that $(z(b)-z(a)) \cdot(b-a)>|b-a|^{2}$, and $|z(b)-z(a)|>|b-a|$.

Proof. Since $z(b)-z(a)=(b-a)+(\phi(b)-\phi(a))$, we have that $(z(b)-z(a))$. $(b-a)=|b-a|^{2}+(\phi(b)-\phi(a)) \cdot(b-a)>|b-a|^{2}$ by the previous lemma.

Then $|b-a|^{2}<|(z(b)-z(a)) \cdot(b-a)| \leq|z(b)-z(a)||b-a|$, where the second inequality holds by Cauchy-Schwarz; so $|b-a|<|z(b)-z(a)|$.

Lemma 15.2.3 (Osserman 5.3). Assume the hypotheses of Osserman Lemma 5.2. If D is the disk $x_{1}^{2}+x_{2}^{2}<R^{2}$, then the map z is a diffeomorphism of D onto a domain Δ which includes a disk of radius R around $z(0)$.

Proof. We know that z is continuously differentiable, since $E \in C^{2}$. If $x(t)$ is any differentiable curve in D and $z(t)$ is its image under z, then it follows from the previous lemma that $\left|z^{\prime}(t)\right|>\left|x^{\prime}(t)\right|$; thus the determinant of the matrix $d z$ (which is to say, the Jacobian) is greater than 1 , since $z^{\prime}(t)=(d z) x^{\prime}(t)$ implies that $\left|z^{\prime}(t)\right|=\operatorname{det} d z\left|x^{\prime}(t)\right|$. So since the Jacobian is everywhere greater than 1 , the map is a local diffeomorphism everywhere. It's also injective (because
$\phi(b)-\phi(a)=0$ implies that $b-a=0$ by the previous lemma), so it's in fact a (global) diffeomorphism onto a domain Δ.

We must show that Δ includes all points z such that $z-z(0)<R$. If Δ is the whole plane this is obvious; otherwise there is a point Z in the complement of Δ (which is closed) which minimizes the distance to $z(0)$. Let Z^{k} be a sequence of points in $\mathbb{R}^{2}-\Delta$ which approach Z (if this didn't exist, we could find a point in $\mathbb{R}^{2}-\Delta$ closer to $z(0)$ than Z), and since z is a diffeomorphism, we let x^{k} be the sequence of points mapped onto Z^{k} by z. The points x^{k} cannot have a point of accumulation in D, since that would be mapped by z onto a point of Δ, and we are assuming that $Z \notin \Delta$. But x^{k} must have an accumulation point in \mathbb{R}^{2} in order for their image to; so $\left|x^{k}\right| \rightarrow R$ as $k \rightarrow \infty$; since $\left|\mathbb{Z}^{k}-z(0)\right|>\left|x^{k}-0\right|$ by the previous lemma, we have that $|Z-z(0)| \geq R$, so every point within R of $z(0)$ is in Δ.

Lemma 15.2.4 (Osserman 5.4). Let $f\left(x_{1}, x_{2}\right)$ be a non-parametric solution to the minimal surface equation in the disk of radius R around the origin. Then the map ξ defined earlier is a diffeomorphism onto a domain Δ which includes a disk of radius R around $\xi(0)$.

Proof. It follows from the defining characteristics of F and G that there exists a function E satisfying $\frac{\partial E}{\partial x_{1}}=F$ and $\frac{\partial E}{\partial x_{2}}=G$, for the same reason that F and G exist. Then $E \in C^{2}$, and $\frac{\partial^{2} E}{\partial x_{1}^{2}}=\frac{1+|p|^{2}}{W}>0$, and $\operatorname{det} \frac{\partial^{2} E}{\partial x_{i} \partial x_{j}}=\frac{\partial(F, G)}{\partial\left(x_{1}, x_{2}\right)}=1>0$ (by the definition of W, it's a simple check). Any matrix $\left(\begin{array}{ll}a & b \\ b & c\end{array}\right)$ with $a>0$ and $a c-b^{2}>0$ must have $c>0$, so its trace and determinant are both positive, so the sum and product of its eigenvalues are both positive, so it is positive definite. So the Hessian of E is positive definite. We can see that the mapping z defined in (our version of) Osserman Lemma 5.2 is in this case the same map as ξ defined in (our version of) Osserman Lemma 4.4. So by Osserman Lemma 5.3, we have that ξ is a diffeomorphism onto a domain Δ which includes a disk of radius R around $\xi(0)$.

Lemma 15.2.5 (Osserman 5.5). Let $f: D \rightarrow \mathbb{R}$ be a C^{1} function. Then the surface S in \mathbb{R}^{3} defined in non-parametric form by $x_{3}=f\left(x_{1}, f_{2}\right)$ lies on a plane iff there exists a nonsingular linear transformation $\psi: U \rightarrow D$ from some domain U such that u_{1}, u_{2} are isothermal parameters on S.

Proof. Suppose such parameters u_{1}, u_{2} exist. Letting $\phi_{k}(\zeta)=\frac{\partial x_{k}}{\partial u_{1}}-i \frac{\partial x_{k}}{\partial u_{2}}$, for $1 \leq k \leq 3$, we see that ϕ_{1} and ϕ_{2} are constant because x_{1} and x_{2} are linear in u_{1} and u_{2}. We know from a previous lecture that u_{1} and u_{2} are isothermal parameters iff $\sum_{k=1}^{3} \phi_{k}^{2}(\zeta)$ is zero for all ζ, so ϕ_{3} is constant too. (Well, it implies that ϕ_{3}^{2} is constant, which constrains it to at most two values, and since ϕ_{3} must be continuous, it must be constant.) This means that x_{3} has a constant gradient with respect to u_{1}, u_{2} and thus also with respect to x_{1}, x_{2}. This means that we must have $f\left(x_{1}, x_{2}\right)=A x_{1}+B x_{2}+C$; but this is the equation of a plane.

Conversely, if $f\left(x_{1}, x_{2}\right)$ is a part of a plane, then it equals $A x_{1}+B x_{2}+C$ for some constants A, B, and C. Then the map $x\left(u_{1}, u_{2}\right)=\left(\lambda A u_{1}+B u_{2}, \lambda B u_{1}-\right.$ $A u_{2}$) with $\lambda^{2}=\frac{1}{1+A^{2}+B^{2}}$ is isothermal. To check this, we see that $\phi_{1}=\lambda A-$ $i B, \phi_{2}=\lambda B+i A, \phi_{1}^{2}=\lambda^{2} A^{2}-B^{2}-2 \lambda A B i, \phi_{2}^{2}=\lambda^{2} B^{2}-A^{2}+2 \lambda A B i . x_{3}=$ $A x_{1}+B x_{2}+C=A\left(\lambda A u_{1}+B u_{2}\right)+B\left(\lambda B u_{1}-A u_{2}\right)+C$, so $\phi_{3}=\lambda\left(A^{2}+B^{2}\right)$ and $\phi^{2}=\lambda^{2}\left(A^{2}+B^{2}\right)^{2}$. Then $\phi_{1}^{2}+\phi_{2}^{2}+\phi_{3}^{2}=\lambda^{2}\left(A^{2}+B^{2}\right)-\left(A^{2}+B^{2}\right)+\lambda^{2}\left(A^{2}+\right.$ $\left.B^{2}\right)^{2}=\left(A^{2}+B^{2}\right)\left(\lambda^{2}-1+\lambda^{2}\left(A^{2}+B^{2}\right)\right)=\left(A^{2}+B^{2}\right)\left(\lambda^{2}\left(1+A^{2}+B^{2}\right)-1\right)=$ $\left(A^{2}+B^{2}\right)(1-1)=0$, so this is isothermal.

15.3 Bernstein's Theorem

Theorem 15.3.1 (Bernstein's Theorem, Osserman 5.1). Let f(x_{1}, x_{2}) be a solution of the non-parametric minimal surface equation defined in the entire x_{1}, x_{2} plane. Then there exists a nonsingular linear transformation $x_{1}=u_{1}, x_{2}=a u_{1}+b u_{2}$ with $b>0$ such that u_{1}, u_{2} are isothermal parameters on the entire u-plane for the minimal surface S defined by $x_{k}=f_{k}\left(x_{1}, x_{2}\right)$ ($3 \leq k \leq n$).

Proof. Define the map ξ as in our version of Osserman Lemma 4.4. Osserman Lemma 5.4 shows that this is a diffeomorphism from the entire x-plane onto the entire ξ-plane. We know from Osserman Lemma 4.4 that ξ is a set of isothermal parameters on S. By Osserman Lemma 4.3 (which Nizam proved), the functions $\phi_{k}(\zeta)=\frac{\partial x_{k}}{\partial \xi_{1}}-i \frac{\partial x_{k}}{\partial \xi_{2}}(1 \leq k \leq n)$ are analytic functions of ζ. We can see that $\Im\left(\bar{\phi}_{1} \phi_{2}\right)=-\frac{\partial\left(x_{1}, x_{2}\right)}{\partial\left(\xi_{1}, \xi_{2}\right)}$; since this Jacobian is always positive (see proof of Osserman Lemma 4.4), we can see that $\phi_{1} \neq 0, \phi_{2} \neq 0$, and that $\Im \frac{\phi_{2}}{\phi_{1}}=\frac{1}{\left|\phi_{1}\right|^{2}} \Im\left(\bar{\phi}_{1} \phi_{2}\right)<0$. So the function $\frac{\phi_{2}}{\phi_{1}}$ is analytic on the whole ζ-plane and has negative imaginary part everywhere. By Picard's Theorem, an analytic function that misses more than one value is constant, so $\frac{\phi_{2}}{\phi_{1}}=C$ where $C=a-i b$. That is $\phi_{2}=(a-i b) \phi_{1}$. The real part of this equation is $\frac{\partial x_{2}}{\partial \xi_{1}}=a \frac{\partial x_{1}}{\partial \xi_{1}}-b \frac{\partial x_{1}}{\partial \xi_{2}}$, and the imaginary part is $\frac{\partial x_{2}}{\partial \xi_{2}}=b \frac{\partial x_{1}}{\partial \xi_{1}}+a \frac{\partial x_{1}}{\partial \xi_{2}}$. If we then apply the linear transformation from the statement of the theorem, using the a and b that we have, this becomes $\frac{\partial u_{1}}{\partial \xi_{1}}=\frac{\partial u_{2}}{\partial \xi_{2}}$ and $\frac{\partial u_{2}}{\partial \xi_{2}}=-\frac{\partial u_{1}}{\partial \xi_{2}}$: the Cauchy-Reimann equations! So $u_{1}+i u_{2}$ is an analytic function of $\xi_{1}+i \xi_{2}$. But by Osserman Lemma 4.5, this implies that u_{1}, u_{2} are also isothermal parameters, which proves the theorem.

This (with Osserman Lemma 5.5) has the immediate corollary that for $n=3$, the only solution of the non-parametric minimal surface equation on the entire x-plane is surface that is a plane. This gives us a nice way to generate lots of weird minimal surfaces in dimensions 4 and up by starting with analytic functions; this is Osserman Corollary 3, but I do not have time to show this.

