
Chapter 14

Isotherman Parameters

Let x : U → S be a regular surface. Let

φk(z) =
∂xk

∂u1

− i
∂xk

∂u2

, z = u1 + iu2. (14.1)

Recall from last lecture that

a)φ is analytic in z ⇔ xk is harmonic in u1 and u2.

b)u1 and u2 are isothermal parameters ⇔

n∑

k=1

φ2
k(z) = 0 (14.2)

c) If u1, u2 are isothermal parameters, then S is regular ⇔

n∑

k=1

|φk(z)|2 6= 0 (14.3)

We start by stating a lemma that summarizes what we did in the last lecture:

Lemma 4.3 in Osserman: Let x(u) define a minimal surface, with

u1, u2 isothermal parameters. Then the functions φk(z) are analytic and

they satisfy the eqns in b) and c). Conversely if φ1, φ2, .., φn are analytic

functions satisfying the eqns in b) and c) in a simply connected domain D
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then there exists a regular minimal surface defined over domain D, such that

the eqn on the top of the page is valid.

Now we take a surface in non-parametric form:

xk = fk(x1, x2), k = 3, ..., n (14.4)

and we have the notation from the last time:

f = (f3, f4, ..., fn), p =
∂f

∂x1

, q =
∂f

∂x2

, r =
∂2f

∂x2
1

, s =
∂2f

∂x1∂x2

, t =
∂2f

∂x2
2

(14.5)

Then the minimal surface eqn may be written as:

(1 + |q|2) ∂p

∂x1

− (p.q)(
∂p

∂x2

+
∂q

∂x1

) + (1 + |p|2) ∂q

∂x2

= 0 (14.6)

equivalently

(1 + |q|2)r − 2(p.q)s + (1 + |p|2)t = 0 (14.7)

One also has the following:

detgij = 1 + |p|2 + |q|2 + |p|2|q|2 − (p.q)2 (14.8)

Define

W =
√

detgij (14.9)

Below we’ll do exactly the same things with what we did when we showed

that the mean curvature equals 0 if the surface is minimizer for some curve.

Now we make a variation in our surface just like the one that we did before

(the only difference is that x1 and x2 are not varied.)

f̃k = fk + λhk, k = 3, ..., n, (14.10)

where λ is a real number, and hk ∈ C1 in the domain of definition D of the
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fk We have

f̃ = f + λh, p̃ = p + λ
∂h

∂x1

, q̃ = q + λ
∂h

∂x2

(14.11)

One has

W̃ 2 = W 2 + 2λX + λ2Y (14.12)

where

X = [(1 + |q|2)p − (p.q)q].
∂h

∂x1

+ [(1 + |p|2)q − (p.q)p].
∂h

∂x2

(14.13)

and Y is a continuous function in x1 and x2. It follows that

W̃ = W + λ
X

W
+ O(λ2) (14.14)

as |λ| → 0 Now we consider a closed curve Γ on our surface. Let ∆ be the

region bounded by Γ If our surface is a minimizer for ∆ then for every choice

of h such that h = 0 on Γ we have

∫ ∫

∆

W̃dx1dx2 ≥
∫ ∫

∆

Wdx1dx2 (14.15)

which implies ∫ ∫

∆

X

W
= 0 (14.16)

Substituting for X, integrating by parts, and using the fact that h = 0 on Γ

, we find

∫ ∫

∆

[
∂

∂x1

[
1 + |q|2

W
p − p.q

W
q

]
+

∂

∂x2

[
1 + |p|2

W
q − p.q

W
p

]]
hdx1dx2 = 0

(14.17)

must hold everywhere. By the same reasoning that we used when we found

the condition for a minimal surface the above integrand should be zero.

∂

∂x1

[
1 + |q|2

W
p − p.q

W
q

]
+

∂

∂x2

[
1 + |p|2

W
q − p.q

W
p

]
= 0 (14.18)
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Once we found this equation it makes sense to look for ways to derive it

from the original equation since after all there should only be one constraint

for a minimal surface. In fact the LHS of the above eqn can be written as

the sum of three terms:

[
1 + |q|2

W

∂p

∂x1

− p.q

W
(

∂q

∂x1

+
∂p

∂x2

) +
1 + |p|2

W

∂q

∂x2

]
(14.19)

+

[
∂

∂x1

(
1 + |q|2

W
) − ∂

∂x2

(
p.q

W
)

]
p (14.20)

+

[
∂

∂x2

(
1 + |p|2

W
) − ∂

∂x1

(
p.q

W
)

]
q (14.21)

The first term is the minimal surface eqn given on the top of the second

page. If we expand out the coefficient of p in the second term we find the

expression:

1

W 3
[(p.q)q − (1 + |q|2)p].[(1 + |q|2)r − 2(p.q)s + (1 + |p|2)t] (14.22)

which vanishes by the second version of the minimal surface eqns. Similarly

the coefficient of q in third term vanishes so the while expression equals zero.

In the process we’ve also shown that

∂

∂x1

(
1 + |q|2

W

)
=

∂

∂x2

(p.q

W

)
(14.23)

∂

∂x2

(
1 + |p|2

W

)
=

∂

∂x1

(p.q

W

)
(14.24)

Existence of isothermal parameters or Lemma 4.4 in Osserman

Let S be a minimal surface. Every regular point of S has a neighborhood in

which there exists a reparametrization of S in terms of isothermal parameters.

Proof: Since the surface is regular for any point there exists a neighbor-

hood of that point in which S may be represented in non-parametric form.

In particular we can find a disk around that point where the surface can be
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represented in non parametric form. Now the above eqns imply the existence

of functions F (x1, x2) G(x1, x2) defined on this disk, satisfying

∂F

∂x1

=
1 + |p|2

W
,
∂F

∂x2

=
p.q

W
; (14.25)

∂G

∂x1

=
p.q

W
,
∂G

∂x2

=
1 + |q|2

W
(14.26)

If we set

ξ1 = x1 + F (x1, x2), ξ2 = x2 + G(x1, x2), (14.27)

we find

J =
∂(x1, x2)

∂(x1, x2)
= 2 +

2 + |p|2 + |q|2
W

≥ 0 (14.28)

Thus the transformation (x1, x2) → (ξ1, ξ2) has a local inverse (ξ1, ξ2) →
(x1, x2). We find the derivative of x at point (ξ1, ξ2):

Dx = J−1[x1, x2, f3, ..., fn] (14.29)

It follows that with respect to the parameters ξ1, ξ2 we have

g11 = g22 = | ∂x

∂ξ1

|2 = | ∂x

∂ξ2

|2 (14.30)

g12 =
∂x

∂ξ1

.
∂x

∂ξ2

= 0 (14.31)

so that ξ1, ξ2 are isothermal coordinates.
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