Chapter 14

Isotherman Parameters

Let $x: U \rightarrow S$ be a regular surface. Let

$$
\begin{equation*}
\phi_{k}(z)=\frac{\partial x_{k}}{\partial u_{1}}-i \frac{\partial x_{k}}{\partial u_{2}}, z=u_{1}+i u_{2} \tag{14.1}
\end{equation*}
$$

Recall from last lecture that
a) ϕ is analytic in $\mathrm{z} \Leftrightarrow x_{k}$ is harmonic in u_{1} and u_{2}.
b) u_{1} and u_{2} are isothermal parameters \Leftrightarrow

$$
\begin{equation*}
\sum_{k=1}^{n} \phi_{k}^{2}(z)=0 \tag{14.2}
\end{equation*}
$$

c) If u_{1}, u_{2} are isothermal parameters, then S is regular \Leftrightarrow

$$
\begin{equation*}
\sum_{k=1}^{n}\left|\phi_{k}(z)\right|^{2} \neq 0 \tag{14.3}
\end{equation*}
$$

We start by stating a lemma that summarizes what we did in the last lecture:
Lemma 4.3 in Osserman: Let $\mathrm{x}(\mathrm{u})$ define a minimal surface, with u_{1}, u_{2} isothermal parameters. Then the functions $\phi_{k}(z)$ are analytic and they satisfy the eqns in b) and c). Conversely if $\phi_{1}, \phi_{2}, . ., \phi_{n}$ are analytic functions satisfying the eqns in b) and c) in a simply connected domain D
then there exists a regular minimal surface defined over domain D, such that the eqn on the top of the page is valid.

Now we take a surface in non-parametric form:

$$
\begin{equation*}
x_{k}=f_{k}\left(x_{1}, x_{2}\right), k=3, \ldots, n \tag{14.4}
\end{equation*}
$$

and we have the notation from the last time:

$$
\begin{equation*}
f=\left(f_{3}, f_{4}, \ldots, f_{n}\right), p=\frac{\partial f}{\partial x_{1}}, q=\frac{\partial f}{\partial x_{2}}, r=\frac{\partial^{2} f}{\partial x_{1}^{2}}, s=\frac{\partial^{2} f}{\partial x_{1} \partial x_{2}}, t=\frac{\partial^{2} f}{\partial x_{2}^{2}} \tag{14.5}
\end{equation*}
$$

Then the minimal surface eqn may be written as:

$$
\begin{equation*}
\left(1+|q|^{2}\right) \frac{\partial p}{\partial x_{1}}-(p . q)\left(\frac{\partial p}{\partial x_{2}}+\frac{\partial q}{\partial x_{1}}\right)+\left(1+|p|^{2}\right) \frac{\partial q}{\partial x_{2}}=0 \tag{14.6}
\end{equation*}
$$

equivalently

$$
\begin{equation*}
\left(1+|q|^{2}\right) r-2(p . q) s+\left(1+|p|^{2}\right) t=0 \tag{14.7}
\end{equation*}
$$

One also has the following:

$$
\begin{equation*}
\operatorname{detg}_{i j}=1+|p|^{2}+|q|^{2}+|p|^{2}|q|^{2}-(p . q)^{2} \tag{14.8}
\end{equation*}
$$

Define

$$
\begin{equation*}
W=\sqrt{\operatorname{det} g_{i j}} \tag{14.9}
\end{equation*}
$$

Below we'll do exactly the same things with what we did when we showed that the mean curvature equals 0 if the surface is minimizer for some curve. Now we make a variation in our surface just like the one that we did before (the only difference is that x_{1} and x_{2} are not varied.)

$$
\begin{equation*}
\tilde{f}_{k}=f_{k}+\lambda h_{k}, k=3, \ldots, n \tag{14.10}
\end{equation*}
$$

where λ is a real number, and $h_{k} \in C^{1}$ in the domain of definition D of the
f_{k} We have

$$
\begin{equation*}
\tilde{f}=f+\lambda h, \tilde{p}=p+\lambda \frac{\partial h}{\partial x_{1}}, \tilde{q}=q+\lambda \frac{\partial h}{\partial x_{2}} \tag{14.11}
\end{equation*}
$$

One has

$$
\begin{equation*}
\tilde{W}^{2}=W^{2}+2 \lambda X+\lambda^{2} Y \tag{14.12}
\end{equation*}
$$

where

$$
\begin{equation*}
X=\left[\left(1+|q|^{2}\right) p-(p . q) q\right] \cdot \frac{\partial h}{\partial x_{1}}+\left[\left(1+|p|^{2}\right) q-(p . q) p\right] \cdot \frac{\partial h}{\partial x_{2}} \tag{14.13}
\end{equation*}
$$

and Y is a continuous function in x_{1} and x_{2}. It follows that

$$
\begin{equation*}
\tilde{W}=W+\lambda \frac{X}{W}+O\left(\lambda^{2}\right) \tag{14.14}
\end{equation*}
$$

as $|\lambda| \rightarrow 0$ Now we consider a closed curve Γ on our surface. Let Δ be the region bounded by Γ If our surface is a minimizer for Δ then for every choice of h such that $h=0$ on Γ we have

$$
\begin{equation*}
\iint_{\Delta} \tilde{W} d x_{1} d x_{2} \geq \iint_{\Delta} W d x_{1} d x_{2} \tag{14.15}
\end{equation*}
$$

which implies

$$
\begin{equation*}
\iint_{\Delta} \frac{X}{W}=0 \tag{14.16}
\end{equation*}
$$

Substituting for X , integrating by parts, and using the fact that $h=0$ on Γ , we find

$$
\begin{equation*}
\iint_{\Delta}\left[\frac{\partial}{\partial x_{1}}\left[\frac{1+|q|^{2}}{W} p-\frac{p \cdot q}{W} q\right]+\frac{\partial}{\partial x_{2}}\left[\frac{1+|p|^{2}}{W} q-\frac{p \cdot q}{W} p\right]\right] h d x_{1} d x_{2}=0 \tag{14.17}
\end{equation*}
$$

must hold everywhere. By the same reasoning that we used when we found the condition for a minimal surface the above integrand should be zero.

$$
\begin{equation*}
\frac{\partial}{\partial x_{1}}\left[\frac{1+|q|^{2}}{W} p-\frac{p \cdot q}{W} q\right]+\frac{\partial}{\partial x_{2}}\left[\frac{1+|p|^{2}}{W} q-\frac{p \cdot q}{W} p\right]=0 \tag{14.18}
\end{equation*}
$$

Once we found this equation it makes sense to look for ways to derive it from the original equation since after all there should only be one constraint for a minimal surface. In fact the LHS of the above eqn can be written as the sum of three terms:

$$
\begin{align*}
{\left[\frac{1+|q|^{2}}{W} \frac{\partial p}{\partial x_{1}}-\right.} & \left.\frac{p \cdot q}{W}\left(\frac{\partial q}{\partial x_{1}}+\frac{\partial p}{\partial x_{2}}\right)+\frac{1+|p|^{2}}{W} \frac{\partial q}{\partial x_{2}}\right] \tag{14.19}\\
& +\left[\frac{\partial}{\partial x_{1}}\left(\frac{1+|q|^{2}}{W}\right)-\frac{\partial}{\partial x_{2}}\left(\frac{p \cdot q}{W}\right)\right] p \tag{14.20}\\
& +\left[\frac{\partial}{\partial x_{2}}\left(\frac{1+|p|^{2}}{W}\right)-\frac{\partial}{\partial x_{1}}\left(\frac{p \cdot q}{W}\right)\right] q \tag{14.21}
\end{align*}
$$

The first term is the minimal surface eqn given on the top of the second page. If we expand out the coefficient of p in the second term we find the expression:

$$
\begin{equation*}
\frac{1}{W^{3}}\left[(p . q) q-\left(1+|q|^{2}\right) p\right] \cdot\left[\left(1+|q|^{2}\right) r-2(p . q) s+\left(1+|p|^{2}\right) t\right] \tag{14.22}
\end{equation*}
$$

which vanishes by the second version of the minimal surface eqns. Similarly the coefficient of q in third term vanishes so the while expression equals zero. In the process we've also shown that

$$
\begin{align*}
\frac{\partial}{\partial x_{1}}\left(\frac{1+|q|^{2}}{W}\right) & =\frac{\partial}{\partial x_{2}}\left(\frac{p \cdot q}{W}\right) \tag{14.23}\\
\frac{\partial}{\partial x_{2}}\left(\frac{1+|p|^{2}}{W}\right) & =\frac{\partial}{\partial x_{1}}\left(\frac{p \cdot q}{W}\right) \tag{14.24}
\end{align*}
$$

Existence of isothermal parameters or Lemma 4.4 in Osserman

 Let S be a minimal surface. Every regular point of S has a neighborhood in which there exists a reparametrization of S in terms of isothermal parameters.Proof: Since the surface is regular for any point there exists a neighborhood of that point in which S may be represented in non-parametric form. In particular we can find a disk around that point where the surface can be
represented in non parametric form. Now the above eqns imply the existence of functions $F\left(x_{1}, x_{2}\right) G\left(x_{1}, x_{2}\right)$ defined on this disk, satisfying

$$
\begin{align*}
\frac{\partial F}{\partial x_{1}} & =\frac{1+|p|^{2}}{W}, \frac{\partial F}{\partial x_{2}}=\frac{p \cdot q}{W} \tag{14.25}\\
\frac{\partial G}{\partial x_{1}} & =\frac{p \cdot q}{W}, \frac{\partial G}{\partial x_{2}}=\frac{1+|q|^{2}}{W} \tag{14.26}
\end{align*}
$$

If we set

$$
\begin{equation*}
\xi_{1}=x_{1}+F\left(x_{1}, x_{2}\right), \xi_{2}=x_{2}+G\left(x_{1}, x_{2}\right) \tag{14.27}
\end{equation*}
$$

we find

$$
\begin{equation*}
J=\frac{\partial\left(x_{1}, x_{2}\right)}{\partial\left(x_{1}, x_{2}\right)}=2+\frac{2+|p|^{2}+|q|^{2}}{W} \geq 0 \tag{14.28}
\end{equation*}
$$

Thus the transformation $\left(x_{1}, x_{2}\right) \rightarrow\left(\xi_{1}, \xi_{2}\right)$ has a local inverse $\left(\xi_{1}, \xi_{2}\right) \rightarrow$ $\left(x_{1}, x_{2}\right)$. We find the derivative of x at point $\left(\xi_{1}, \xi_{2}\right)$:

$$
\begin{equation*}
D x=J^{-1}\left[x_{1}, x_{2}, f_{3}, \ldots, f_{n}\right] \tag{14.29}
\end{equation*}
$$

It follows that with respect to the parameters ξ_{1}, ξ_{2} we have

$$
\begin{array}{r}
g_{11}=g_{22}=\left|\frac{\partial x}{\partial \xi_{1}}\right|^{2}=\left|\frac{\partial x}{\partial \xi_{2}}\right|^{2} \\
g_{12}=\frac{\partial x}{\partial \xi_{1}} \cdot \frac{\partial x}{\partial \xi_{2}}=0 \tag{14.31}
\end{array}
$$

so that ξ_{1}, ξ_{2} are isothermal coordinates.

