
Chapter 13

Review on Complex Analysis II

(This lecture was given Friday, October 22, 2004.)

13.1 Poles and Singularities

(Following Ahlfors pages 127 - 129.)

We consider a function f(z) analytic in a neighborhood of a, except per-

haps at a itself. (So f(z) is analytic on a region 0 < |z − a| < δ.)

Definition 13.1.1. The number a, as above, is called an isolated singularity

of f .

We call a a removable singularity if we can simply define f(a) appropri-

ately so that f(z) becomes analytic in the entire disk |z − a| < δ. This is

discussed in Ahlfors, page 124.

Definition 13.1.2. If limz→a f(z) = ∞, a is a pole of f(z).

With the case of a pole, we set f(a) = ∞. Then there exists a δ′ ≤ δ

such that f(z) 6= 0 on 0 < |z − a| < δ′. On this disk, we can look at

g(z) = 1/f(z), which is analytic on this disk, and more importantly has a

removable singularity at a. So we can set g(a) = 0.
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Now g(z) doesn’t vanish identically, so we know that the zero of g at a

has finite order and we can write g(z) = (z − a)hgh(z) , where gh(z) 6= 0 and

is analytic (we can do this because an analytic function behaves locally like a

polynomial. Since our function isn’t identically zero, we can find a derivative

g(h)(a) that doesn’t vanish, and then look at the Taylor series expansion

from that term on, factoring out (z−a)h from each term. See Kai’s previous

notes, Eq. 60.) We call h the order of the pole, and we can now write

f(z) = (z − a)−hfh(z), where fh(z) = 1/gh(z) is analytic and non-zero in a

neighborhood of a.

Definition 13.1.3. : A function f(z) analytic in a region Ω, except for at

its poles, is called meromorphic in Ω.

Equivalently, for every a ∈ Ω, there is either a neighborhood |z − a| < δ

where the function is analytic, or else f(z) is analytic on 0 < |z − a| < δ and

the isolated singularity there is a pole. So that means that the poles of a

meromorphic function are isolated by definition. (What would happen if the

poles weren’t isolated?)

Looking at the quotient f(z)/g(z) of two analytic functions in Ω, and

assuming that g(z) isn’t identically zero, we get a meromorphic function in Ω.

The possible poles here are the zeroes of g(z), but a common zero of f(z) and

g(z) could be a removable singularity (f(z) = (z2 − 1)/(z + 1), for example.)

Similarly, the sum, product, and quotient of meromorphic functions are again

meromorphic. When regarding the quotient of meromorphic functions, we

exclude the possibility of the denominator being identically zero (otherwise,

we’d have to consider f(z) = ∞ to be a meromorphic function.)

Let’s now take a deeper look at isolated singularities. Consider the con-

ditions

lim
z→a

|z − a|α|f(z)| = 0 (13.1)

lim
z→a

|z − a|α|f(z)| = ∞ (13.2)
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where α is a real number. If (1) holds for a given value of α, then it holds

for all larger values of α, and thus we can find some integer m where it is

true. This means that g(z) = (z − a)mf(z) has a removable singularity and

vanishes on a. From here, we know that either f(z) is identically zero (and

then (1) holds for all α), or g(z) = (z − a)mf(z) has a zero of finite order

k. In the latter case, we can write g(z) = (z − a)k(z − a)m−kf(z), where

(z − a)m−kf(z) is analytic. So if α > h = m − k, (1) holds, and if α < h (2)

holds.

Now we assume that condition (2) holds for some α. Then it holds for all

smaller α, and likewise for some integer n. The function g(z) = (z − a)nf(z)

has a pole of finite order l, and setting h = n + l (since now we write

g(z) = (z− a)−l(z− a)l+nf(z), where (z− a)l+nf(z) is analytic) we find that

condition (1) holds when α > h and condition (2) holds when α < h.

This means that given an isolated singularity, we have three cases to

examine:

i) f(z) is identically zero

ii) there exists an integer h such that (1) holds for h > α and (2) holds

for h < α

iii) neither (1) nor (2) holds for any α.

Case i) is not interesting.

With case ii), we call h the algebraic order of f(z) at a. For a pole this

is positive, for a zero it is negative, and it is zero when f(z) is analytic but

not equal to zero at a. The algebraic order is always an integer – there is no

single-valued analytic function which tends to 0 or ∞ like a fractional power

of |z − a|
For case iii), a is called an essential isolated singularity. So in any neigh-

borhood of an essential isolated singularity, f(z) is both unbounded and

comes arbitrarily close to zero. This is illustrated by:

Theorem 13.1.4 (Weierstrass). An analytic function comes arbritrarily

close to any complex value in every neighborhood of an essential singularity.
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Proof. : Suppose that isn’t true. Then we can find a complex number A and

a δ > 0 such that |f(z) − A| > δ in a neighborhood of a (except at z = a.)

For any α < 0 we then have limz→a |z − a|α|f(z) − A| = ∞. So a would not

be an essential singularity of f(z) − A.

Then we can find a β where limz→a |z − a|β|f(z) − A| = 0 (since we’re

now looking at a case ii) singularity) and we’re free to choose β > 0. Then

since in that case limz→a |z−a|β = 0, it follows that limz→a |z−a|β|f(z)| = 0,

contradicting the fact that a is an essential singularity of f(z).
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