
Chapter 12

Review on Complex Analysis I

Reading: Alfors [1]:

• Chapter 2, 2.4, 3.1-3.4

• Chapter 3, 2.2, 2.3

• Chapter 4, 3.2

• Chapter 5, 1.2

12.1 Cutoff Function

Last time we talked about cutoff function. Here is the way to construct one

on R
n [5].

Proposition 12.1.1. Let A and B be two disjoint subsets in R
m, A compact

and B closed. There exists a differentiable function ϕ which is identically 1

on A and identically 0 on B

Proof. We will complete the proof by constructing such a function.
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A plot of f(x) with a = 2 and b = 9

Let 0 < a < b and define a function f : R → R by

f(x) =

{
exp

(
1

x−b
− 1

x−a

)
if a < x < b

0 otherwise.

}
(12.1)

It is easy to check that f and the function

F (x) =

∫ b

x
f(t) dt

∫ b

a
f(t) dt

(12.2)

are differentiable. Note that the function F has value 1 for x ≤ a and 0 for

x ≥ b. Thus, the function

ψ(x1, . . . , xm) = F (x2
1 + . . . + x2

m) (12.3)

is differentiable and has values 1 for x2
1+. . .+x2

m ≤ a and 0 for x2
1+. . .+x2

m ≥
b.

Let S and S ′ be two concentric spheres in R
m, S ′ ⊂ S. By using ψ and
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linear transformation, we can construct a differentiable function that has

value 1 in the interior of S ′ and value 0 outside S.

Now, since A is compact, we can find finitely many spheres Si(1 ≤ i ≤ n)

and the corresponding open balls Vi such that

A ⊂
n⋃

i=1

Vi (12.4)

and such that the closed balls V̄i do not intersect B.

We can shrink each Si to a concentric sphere S ′
i such that the correspond-

ing open balls V ′
i still form a covering of A. Let ψi be a differentiable function

on R
m which is identically 1 on B′

i and identically 0 in the complement of

V ′
i , then the function

ϕ = 1 − (1 − ψ1)(1 − ψ2) . . . (1 − ψn) (12.5)

is the desired cutoff function.

12.2 Power Series in Complex Plane

In this notes, z and ai’s are complex numbers, i ∈ Z.

Definition 12.2.1. Any series in the form

∞∑

n=0

an(z−z0)
n = a0 +a1(z−z0)+a2(z−z0)

2 + . . .+an(z−z0)
n + . . . (12.6)

is called power series.

Without loss of generality, we can take z0 to be 0.

Theorem 12.2.2. For every power series 12.6 there exists a number R,

0 ≤ R ≤ ∞, called the radius of convergence, with the following properties:
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1. The series converges absolutely for every z with |z| < R. If 0 ≤ ρ ≤ R

the convergence is uniform for |z| ≤ ρ.

2. If |z| > R the terms of the series are unbounded, and the series is

consequently divergent.

3. In |z| < R the sum of the series is an analytic function. The derivative

can be obtained by termwise differentiation, and the derived series has

the same radius of convergence.

Proof. The assertions in the theorem is true if we choose R according to the

Hadamard’s formula
1

R
= lim sup

n→∞

n
√

|an|. (12.7)

The proof of the above formula, along with assertion (1) and (2), can be

found in page 39 of Alfors.

For assertion (3), first I will prove that the derived series
∑∞

1 nanzn−1

has the same radius of convergence. It suffices to show that

lim
n→∞

n
√

n = 1 (12.8)

Let n
√

n = 1 + δn. We want to show that limn→∞ δn = 0. By the binomial

theorem,

n = (1 + δn)n > 1 +
1

2
n(n − 1)δ2

n (12.9)

which gives

δ2
n <

2

n
(12.10)

and thus

lim
n→∞

δn = 0 (12.11)

Let us write

f(z) =
∞∑

0

anz
n = sn(z) + Rn(z) (12.12)
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where

sn(z) = a0 + a1z + . . . + an−1z
n−1 (12.13)

is the partial sum of the series, and

Rn(z) =
∞∑

k=n

akz
k (12.14)

is the remainder of the series. Also let

f1(z) =
∞∑

1

nanzn−1 = lim
n→∞

s′n(z). (12.15)

If we can show that f ′(z) = f1(z), then we can prove that the sum of the

series is an analytic function, and the derivative can be obtained by termwise

differentiation.

Consider the identity

f(z) − f(z0)

z − z0

−f1(z0) =

(
sn(z) − sn(z0)

z − z0

− s′n(z0)

)
+(s′n(z0)−f1(z0))+

(
Rn(z) − Rn(z0)

z − z0

)

(12.16)

and assume z 6= z0 and |z|, |z0| < ρ < R. The last term can be rewritten as

∞∑

k=n

ak(z
k−1 + zk−2z0 + . . . + zzk−2

o ) = zk−1
0 , (12.17)

and thus ∣∣∣∣
Rn(z) − Rn(z0)

z − z0

∣∣∣∣ ≤
∞∑

k=n

k|ak|ρk−1 (12.18)

Since the left hand side of the inequality is a convergent sequence, we can

find n0 such that for n ≥ n0,

∣∣∣∣
Rn(z) − Rn(z0)

z − z0

∣∣∣∣ <
ǫ

3
. (12.19)
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From Eq. 12.15, we know that there is also an n1 such that for n ≥ n1,

|s′n(z0) − f1(z0)| <
ǫ

3
. (12.20)

Now if we choose n ≥ n0, n1, from the definition of derivative we can find

δ > 0 such that 0 < |z − z0| < δ implies

∣∣∣∣
sn(z) − sn(z0)

z − z0

− s′n(z0)

∣∣∣∣ <
ǫ

3
. (12.21)

Combining Eq. 12.19, 12.20 and 12.21, we have for 0 < |z − z0| < δ

∣∣∣∣
f(z) − f(z0)

z − z0

− f1(z0)

∣∣∣∣ < ǫ (12.22)

Thus, we have proved that f ′(z0) exists and equals f1(z0).

12.3 Taylor Series

Note that we have proved that a power series with positive radius of conver-

gence has derivatives of all orders. Explicitly,

f(z) = a0 + a1z + a2z
2 + . . . (12.23)

f ′(z) = z1 + 2a2z + 3a3z
2 + . . . (12.24)

f ′′(z) = 2a2 + 6a3z + 12a4z
2 + . . . (12.25)

... (12.26)

f (k)(z) = k!ak +
(k + 1)!

1!
ak+1z +

(k + 2)!

2!
ak+2z

2 + . . . (12.27)

Since ak = f (k)(0)/k!, we have the Taylor-Maclaurin series:

f(z) = f(0) + f ′(0)z +
f ′′(0)

2!
z2 + . . . +

f (n)(0)

n!
zn + . . . (12.28)
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Note that we have proved this only under the assumption that f(z) has a

power series development. We did not prove that every analytic function has

a Taylor development, but this is what we are going to state without proof.

The proof can be found in Chapter 4, Sec. 3.1 of [1].

Theorem 12.3.1. If f(z) is analytic in the region Ω, containing z0, then

the representation

f(z) = f(z0) + f ′(z0)(z − z0) +
f ′′(z0)

2!
(z − z0)

2 + . . . +
f (n)(z0)

n!
(z − z0)

n + . . .

(12.29)

is valid in the largest open disk of center z0 contained in Ω.

12.3.1 The Exponential Functions

We define the exponential function as the solution to the following differential

equation:

f ′(z) = f(z) (12.30)

with the initial value f(0) = 1. The solution is denoted by ez and is given by

ez = 1 +
z

1!
+

z2

2!
+ . . . +

zn

n!
+ . . . (12.31)

Since R = lim supn→∞
n
√

n!, we can prove that the above series converges if

lim
n→∞

n
√

n! = ∞ (12.32)

Proposition 12.3.2.

ea+b = eaeb (12.33)

Proof. Since D(ez ·ec−z) = ez ·ec−z +ez ·(−ec−z) = 0, we know that ez ·ec−z is

a constant. The value can be found by putting z = 0, and thus ez · ec−z = ec.

Putting z = a and c = a + b, we have the desired result.

Corollary 12.3.3. ez · e−z = 1, and thus ez is never 0.
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Moreover, if z = x + iy, we have

|eiy|2 = eiye−iy = 1 (12.34)

and

|ex+iy| = |ex|. (12.35)

12.3.2 The Trigonometric Functions

We define

cos z =
eiz + e−iz

2
, sin z =

eiz − e−iz

2i
(12.36)

In other words,

cos z = 1 − z2

2!
+

z4

4!
+ . . . , (12.37)

sin z = z − z3

3!
+

z5

5!
+ . . . . (12.38)

From Eq. 12.36, we can obtain the Euler’s equation,

eiz = cos z + i sin z (12.39)

and

cos2 z + sin2 z = 1 (12.40)

From Eq. 12.39, we can directly find

D cos z = − sin z, D sin z = cos z (12.41)

and the additions formulas

cos(a + b) = cos a cos b − sin a sin b (12.42)

sin(a + b) = sin a cos b + cos a sin b (12.43)
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12.3.3 The Logarithm

The logarithm function is the inverse of the exponential function. Therefore,

z = log w is a root of the equation ez = w. Since ez is never 0, we know

that the number 0 has no logarithm. For w 6= 0 the equation ex+iy = w is

equivalent to

ex = |w|, eiy =
w

|w| (12.44)

The first equation has a unique solution x = log|w|, the real logarithm of |w|.
The second equation is a complex number of absolute value 1. Therefore,

one of the solution is in the interval 0 ≤ y < 2π. Also, all y that differ from

this solution by an integral multiple of 2π satisfy the equation. Therefore,

every complex number other that 0 has infinitely many logarithms which

differ from each other by multiples of 2πi.

If we denote arg w to be the imaginary part of log w, then it is interpreted

as the angle, measured in radians, between the positive real axis and the half

line from 0 through the point w. And thus we can write

log w = log |w| + i arg w (12.45)

The addition formulas of the exponential function implies that

log(z1z2) = log z1 + log z2 (12.46)

arg(z1z2) = arg z1 + arg z2 (12.47)

12.4 Analytic Functions in Regions

Definition 12.4.1. A function f(z) is analytic on an arbitrary point set A

if it is the restriction to A of a function which is analytic in some open set

containing A.

Although the definition of analytic functions requires them to be single-
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valued, we can choose a definite region such that a multiple-valued function,

such as z1/2, is single-valued and analytic when restricted to the region. For

example, for the function f(z) = z1/2, we can choose the region Ω to be the

complement of the negative real axis. With this choice of Ω, one and only one

of the values of z1/2 has a positive real part, and thus f(z) is a single-valued

function in Ω. The proof of continuity and differentiability of f(z) is in [1]

and thus omitted.

12.5 Conformal Mapping

Let γ be an arc with equation z = z(t), t ∈ [−ǫ, ǫ] contained in region Ω

with z(0) = p. Let f(z) be a continuous function on Ω. The equation

w = w(t) = f(z(t)) defines an arc β in the w-plane which we call it the image

of γ.

−ε ε0
t

γ

f

(p) ’(0)w

β

(w)

(w)
f

(z)

(z)

p

z’(0)

Re

Im

w

Ω

z
Re

Im

-plane -plane

We can find w′(0) by

w′(0) = f ′(p)z′(0). (12.48)
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The above equation implies that

arg w′(0) = arg f ′(p) + arg z′(0). (12.49)

In words, it means that the angle between the directed tangents to γ at p and

to β and f(p) is equal to arg f ′(p), and thus independent of γ. Consequently,

curves through p which are tangent to each other are mapped onto curves

with a common tangent at f(p). Moreover, two curves which form an angle

at p are mapped upon curves forming the same angle. In view of this, we

call the mapping f to be conformal at all points with f ′(z) 6= 0.

12.6 Zeros of Analytic Function

The goal of this section is to show that the zeros of analytic functions are

isolated.

Proposition 12.6.1. If f is an analytic function on a region Ω and it does

not vanish identically in Ω, then the zeros of f are isolated.

Proof. Remember that we have assumed in 12.3 that every function f that

is analytic in the region Ω can be written as

f(z) = f(z0) + f ′(z0)(z − z0) +
f ′′(z0)

2!
(z − z0)

2 + . . . +
f (n)(z0)

n!
(z − z0)

n + . . .

(12.50)

Let E1 be the set on which f(z) and all derivatives vanish at z0 ∈ C and

E2 the set on which the function or one of the derivatives evaluated at z0 is

different from zero. When f(z) and all derivatives vanish at z0, then f(z) = 0

inside the whole region Ω. Thus, E1 is open. E2 is open because the function

and all derivatives are continuous. Since Ω is connected, we know that either

E1 or E2 has to be empty. If E2 is empty, then the function is identically

zero. If E1 is empty, f(z) can never vanish together with all its derivatives.
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Assume now that f(z) is not identically zero, and f(z0) = 0. Then there

exists a first derivative f (h)(z0) that is not zero. We say that a is a zero of f

of order h. Moreover, it is possible to write

f(z) = (z − z0)
hfh(z) (12.51)

where fh(z) is analytic and fh(z0) 6= 0.

Since fh(z) is continuous, fh(z) 6= 0 in the neighbourhood of z0 and z = z0

is the unique zero of f(z) in the neighborhood of z0.

Corollary 12.6.2. If f(z) and g(z) are analytic in Ω, and if f(z) = g(z) on

a set which has an accumulation point in Ω, then f(z) is identically equal to

g(z).

Proof. Consider the difference f(z) − g(z) and the result from Proposi-

tion 12.6.1.
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