Homework 2, 18.994. Due Wed Sep 29th

All problems worth 4 points. All homework sets will be worth the same amount unless otherwise indicated.

1. Show that the system

$$
\begin{align*}
3 x+y-z+u^{2} & =0 \tag{1}\\
x-y+2 z+u & =0 \tag{2}\\
2 x+2 y-3 z+2 u & =0 \tag{3}
\end{align*}
$$

can be solved for x, y, u in terms of z, for x, z, u in terms of y, for y, z, u in terms of x but not for x, y, z in terms of u.
2. Set $f(x, y, z)=x^{2} y+e^{x}+z$. By considering f at $(0,1,-1)$, show that there exists a diff'ble ftn g on a nbhd of $(1,-1)$ in \mathbb{R}^{2} such that $g(1,-1)=0$ and $f(g(y, z), y, z)=0$.
3. Prove Lagrange's identity

$$
\left(\sum_{k=1}^{n} a_{k} b_{k}\right)^{2}=\sum_{k=1}^{n} a_{k}^{2} \sum_{k=1}^{n} b_{k}^{2}-\sum_{1 \leq k<j \leq n}\left(a_{k} b_{j}-a_{j} b_{k}\right)^{2} .
$$

do Carmo 2.5 1a,3,5.

