Homework 1, 18.994. Due Wed Sep 22nd

All problems worth 4 points except $2.6,16$ which are worth 3 . All homework sets will be worth the same amount unless otherwise indicated.

S=Spivak
S Chap 1: 10
S Chap 2: 1, 4, 6, 16, 24, 29, 30, 32,39,

1. Suppose $f: \mathbb{R}^{(n+m)} \rightarrow \mathbb{R}^{n}$ is linear. Express the implicit function theorem for this case as a (familiar) statement about systems of linear equations.
2. Show that the system

$$
\begin{align*}
3 x+y-z+u^{2} & =0 \tag{1}\\
x-y+2 z+u & =0 \tag{2}\\
2 x+2 y-3 z+2 u & =0 \tag{3}
\end{align*}
$$

can be solved for x, y, u in terms of z, for x, z, u in terms of y, for y, z, u in terms of x but not for x, y, z in terms of u.
3. Set $f(x, y, z)=x^{2} y+e^{x}+z$. By considering f at $(0,1,-1)$, show that there exists a diff'ble ftn g on a nbhd of $(1,-1)$ in \mathbb{R}^{2} such that $g(1,-1)=0$ and $f(g(y, z), y, z)=0$.

