18.969 Topics in Geometry: Mirror Symmetry Spring 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

MIRROR SYMMETRY: LECTURE 23

DENIS AUROUX

Recall that given an (almost) Calabi-Yau manifold (X, J, ω, Ω) , we defined M to be the set of pairs (L, ∇) , $L \subset X$ a special Lagrangian torus, ∇ a flat U(1) connection on $\mathbb{C} \times L$ modulo gauge equivalence. Up to 2π ,

(1)
$$T_{(L,\nabla)}M = \{(v,i\alpha) \in C^{\infty}(NL) \oplus \Omega^{1}(L;i\mathbb{R}) \mid -\iota_{v}\omega + \frac{1}{2\pi}i\alpha \in \mathcal{H}^{1}_{\psi}(L;\mathbb{C})\}$$
$$= H^{1}_{\psi}(L,\mathbb{C}) = \{\beta \in \Omega^{1}(L,\mathbb{R}) \mid d\beta = 0, d^{*}(\psi\beta) = 0\}, \psi = |\Omega|_{g}$$

is a complex vector space, giving us an integrable J^\vee on M with holomorphic local coordinates

(2)
$$z_{\beta}(L,\nabla) = \underbrace{\exp(-2\pi\omega(\beta))}_{\mathbb{R}_{+}} \underbrace{\operatorname{hol}_{\nabla}(\gamma)}_{U(1)} \in \mathbb{C}^{*}$$

and a holomorphic (n, 0)-form

(3)
$$\Omega^{\vee}((v_1, i\alpha_1), \dots, (v_n, i\alpha_n)) = i^{-n} \int_L (-\iota_{v_1}\omega + \frac{i\alpha_1}{2\pi}) \wedge \dots \wedge (-\iota_{v_n}\omega + \frac{i\alpha_n}{2\pi})$$

After normalizing $\int_L \Omega = 1$, we obtained a compatible Kähler form

(4)
$$\omega^{\vee}((v_1, i\alpha_1), (v_2, i\alpha_2)) = \frac{1}{2\pi} \int_L \alpha_2 \wedge (\iota_{v_1} \operatorname{Im} \Omega) - \alpha_1 \wedge (\iota_{v_2} \operatorname{Im} \Omega)$$

Now, let B be the set of special Lagrangian tori, $\pi^{\vee} : M \to B, (L, \nabla) \to L$ a special Lagrangian torus fibration (with torus fiber $\{(0, i\alpha)\}$) "dual to $\pi : X \to B$ ". Note that π^{\vee} has a zero section $\{(L, d)\}$ which is a special Lagrangian, and has complex conjugation $(L, \nabla) \leftrightarrow (L, \nabla^*)$.

Example. As usual, let $T^2 = \mathbb{C}/\mathbb{Z} + i\rho\mathbb{Z}, \Omega = dz, \omega = \frac{\lambda}{\rho}dx \wedge dy, \int_{T^2} \omega = \lambda$. L is special Lagrangian \Leftrightarrow Im $dz_|L = 0 \Leftrightarrow L$ is parallel to the real axis. We have a fibration $T^2 \xrightarrow{\pi} S^1 = \mathbb{R}/\rho\mathbb{Z}, (x, y) \mapsto y$, with fibers $L_t = \{y = t\}$, inducing a complex affine structure with affine coordinate y (= Im Ω on the arc from L_0 to L), size $(S^1) = \rho$, and a symplectic affine structure $\frac{\lambda}{\rho}y$ (= the symplectic area swept), size $(S^1) = \lambda$. On the mirror $M = \{(L, \nabla)\} \in \mathbb{R}/\rho\mathbb{Z}$, the holomorphic coordinate for J^{\vee} is $\exp(-2\pi\frac{\lambda}{\rho}y)e^{i\theta}, \theta \in \mathbb{R}/2\pi\mathbb{Z}, \nabla = d + i\theta dx$. Or, taking $\frac{1}{2\pi i}$ log), $z^{\vee} = \frac{\theta}{2\pi} + i\frac{\lambda}{\rho}y \in \mathbb{C}/\mathbb{Z} + i\lambda\mathbb{Z}$. Furthermore $\Omega^{\vee} = dz^{\vee}, \omega^{\vee} = \frac{1}{2\pi}d\theta \wedge dy$. Our SYZ transformation exchanges Lagrangian sections of π and flat connections with a connection on a holomorphic line bundle. Explicitly, set $L = \{x = f(y)\}, f$: $\mathbb{R}/\rho\mathbb{Z} \to \mathbb{R}/\mathbb{Z}$, with flat connection $\nabla = d + ih(y)dy, h: \mathbb{R}/\rho\mathbb{Z} \to \mathbb{R}$. We build a Hermitian connection $\dot{\nabla} = d + i f(y) d\theta + i h(y) dy$ on a localy trivialized Hermitian line bundle \mathcal{L} . Note that changing the trivialization by $e^{i\theta}$ changes the connection form by $id\theta$, i.e. $f \leftrightarrow f+1$, glue y=0 to $y=\rho$ by $e^{i \operatorname{deg}(f)\theta}$. Furthermore, deg $(\mathcal{L}) =$ deg $(f: S^1 \to S^1)$. We have a holomorphic structure $\overline{\partial}^{\check{\nabla}} = \check{\nabla}^{0,1}$.

In higher-dimensional tori, we have $L = \{x = f(y)\}$ Lagrangian, $f : \mathbb{R}^n / \Lambda \to$ $\mathbb{R}^n/\mathbb{Z}^n, \ \nabla = d + i\sum_j h_j(y)dy_j, h : \mathbb{R}^n/\Lambda \to \mathbb{R}^n$ on the one side, $\check{\nabla} = d + i\sum_j f_j(y)d\theta_j + i\sum_j h_j(y)dy_j$, which is holomorphic \Leftrightarrow the curvature is $(1,1)/J^{\vee}$.

(5)
$$F = i \sum_{j,k} \frac{\partial f_j}{\partial y_k} dy_k \wedge d\theta_j + i \sum_{j,k} \frac{\partial h_j}{\partial y_k} dy_k \wedge dy_j$$

Then J^{\vee} exchanges dy_k and $d\theta_k$ up to canonical scaling, and is holomorphic \Leftrightarrow

- $\frac{\partial f_j}{\partial y_k} = \frac{\partial f_k}{\partial y_j}$ for $\sum f_j dy_j$ a closed 1-form on \mathbb{R}^n / Λ ($\Leftrightarrow L$ Lagrangian), $\frac{\partial h_j}{\partial y_k} = \frac{\partial h_k}{\partial y_j}$ for $\sum h_j dy_j$ a closed 1-form ($\Leftrightarrow \nabla$ is flat).

1

Example. Let X be a K3 surface, namely a simply connected complex surface with $K_X \cong \mathcal{O}_X$, e.g. a 4-dimensional hypersurface $\{P_4(x_0,\ldots,x_3)=0\} \subset \mathbb{CP}^3$ for P_4 a homogeneous polynomial in degree 4, or a double cover of $\mathbb{CP}^1 \times \mathbb{CP}^1$, $\{z^2 = P_{4,4}((x_0, x_1), (y_0, y_1))\} \subset \text{Tot}(\mathcal{O}(2, 2))$ with Hodge diamond

	1	0	1
(6)	0	20	0

Any K3 surface is hyperkähler, i.e. there are three complex structures I, J, K =IJ = -JI inducing three Kähler forms $\omega_I, \omega_J, \omega_K$ for the same Kähler metric g. The idea is the following: given $I, [\omega_I]$, Yau's theorem gives a Ricci-flat Kähler metric g, and we obtain a holomorphic volume form $\Omega_I \in \Omega^{2,0}$ with $|\Omega_I|_q =$ $1, \Omega_U = \omega_J + i\omega_K$, where ω_I is (1, 1) for $I, \omega_J = \operatorname{Re} \Omega_I, \omega_K = \operatorname{Im} \Omega_I (2, 0) + (0, 2)$ for I are pointwise orthonormal self-dual 2-forms which are covariantly constant.

0

1

Some (not all) K3 surfaces admit fibrations by elliptic curves over spheres, typically with 24 nodal singular fibers. For instance, given a double coordinate of $\mathbb{CP}^1 \times \mathbb{CP}^1$, we project to a \mathbb{CP}^1 factor, and observe that the fibers are double covers of \mathbb{CP}^1 branched at four points. Now, assume we have one of these with a holomorphic section. The fibers will be *I*-complex curves, and thus special Lagrangian for $(\omega_J, \Omega_J = w_K + i\omega_I), (\omega_K, \Omega_K = \omega_I + i\omega_J)$ (they are calibrated by ω_I , which is (1,1) for I so ω_J, ω_K vanish). Mirror symmetry corresponds these latter two structures.