MIT OpenCourseWare
http://ocw.mit.edu

18.969 Topics in Geometry: Mirror Symmetry

Spring 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

MIRROR SYMMETRY: LECTURE 14

DENIS AUROUX

0.1. Lagrangian Floer Homology (contd). Let (M, ω) be a symplectic manifold, L_{0}, L_{1} compact Lagrangian submanifolds intersecting transversely. Recall that the complexes $C F\left(L_{0}, L_{1}\right)=\Lambda^{\left|L_{0} \cap L_{1}\right|}$ carry a differential m_{1}, product m_{2}, and higher operations

$$
\begin{equation*}
C F^{*}\left(L_{0}, L_{1}\right) \otimes \cdots \otimes C F^{*}\left(L_{k-1}, L_{k}\right) \xrightarrow{m_{k}} C F^{*}\left(L_{0}, L_{k}\right)[2-k] \tag{1}
\end{equation*}
$$

We looked at J-holomorphic maps u from disks D^{2} with marked boundary points to disks in the manifold between L_{0}, \ldots, L_{k} with $u\left(z_{0}\right)=q \in L_{0} \cap$ $L_{k}, u\left(z_{i}\right)=p_{i} \in L_{i-1} \cap L_{i}$. We find that the expected dimension of our manifold $\mathcal{M}\left(p_{1}, \ldots, p_{k}, q,[u], J\right)$ is $\operatorname{deg} q-\left(\operatorname{deg} p_{1}+\cdots \operatorname{deg} p_{k}\right)+k-2$. Assuming transversality,

$$
\begin{equation*}
m_{k}\left(p_{k}, \ldots, p_{1}\right)=\sum_{\substack{q \in L_{0} \cap L_{k} \\ \\ \operatorname{ind}([u])=0}}\left(\# \mathcal{M}\left(p_{1}, \ldots, p_{k}, q,[u], J\right)\right) T^{\omega(u)} q \tag{2}
\end{equation*}
$$

By looking at the ∂ (1-dimensional moduli space), we obtained the A_{∞} relations:
Proposition 1. Assuming no bubbling of disks and spheres, $\forall m \geq 1,\left(p_{1}, \ldots, p_{m}\right)$, $p_{i} \in L_{i-1} \cap L_{i}$,

$$
\begin{equation*}
\sum_{\substack{k, \ell \geq 1 \\ k+\ell=m+1 \\ 0 \leq j \leq \ell-1}}(-1)^{*} m_{\ell}\left(p_{m}, \ldots, p_{j+k+1}, m_{k}\left(p_{j+k}, \ldots, p_{j+1}\right), p_{j}, \ldots, p_{1}\right)=0 \tag{3}
\end{equation*}
$$

where $*=\operatorname{deg}\left(p_{1}\right)+\cdots+\operatorname{deg}\left(p_{j}\right)+j$.
This implies that m_{1} is a differential, m_{2} satisfies the Leibniz rule, and m_{2} is associative up to homotopy given by m_{3} (i.e. it is associative in $H F^{*}$).

Definition 1. An A_{∞} category is a linear "category" where morphism spaces are equipped with algebraic operations $\left(m_{k}\right)_{k \geq 1}$ satisfying the A_{∞}-relations (those defined above).

In our case, we have the following categories:

- A Fukaya category is any of a number of A_{∞} categories whose objects are Lagrangian submanifolds (with extra data), the morphisms are Floer complexes, and the algebraic operations are as above.
- So far we only have an ' A_{∞}-precategory" because the homomorphisms have only been defined for transverse pairs of objects.
- At the homology level, we can also define the Donaldson-(Fukaya category) whose homomorphisms are the cohomologies $H F$, so that composition is automatically associative. This is technically easier, but we lose some information that we need for mirror symmetry.
- We eventually want to define our Fukaya category to be over \mathbb{C}, rather than over the Novikov ring. So far, we have counted disks with weights $T^{\omega(u)} \in \Lambda$, and Gromov compactness tells us that there are only finitely many contributions below a certain area. That is, the sums may be infinite, but they converge in the Novikov ring. Physicists usually write the terms as $e^{-2 \pi \omega(u)} \in \mathbb{R}$ instead of $T^{\omega(u)}$, and hope for convergence. Changing the value of T is equivalent to rescaling the symplectic form, i.e. working over Λ is equivalent to working with a family $M,\left(\omega_{t}=t \omega\right)$, with $T=e^{-2 \pi t}$. We thus work near the large volume limit $t \rightarrow \infty$ and compute Floer homologies for all t simultaneously. We call this the "convergent power series" Floer homology: even when defined, this is often not Hamiltonian isotopy invariant.
- For Lagrangians L_{i} equipped with $\left(E_{i}, \nabla_{i}\right) \rightarrow L_{i}$ complex vector bundles with flat (unitary) connections. We think of these as local systems of coefficients on our Lagrangians. We define an associated complex with twisted coefficients:

$$
\begin{equation*}
C F\left(\left(L_{0}, E_{0}, \nabla_{0}\right),\left(L_{1}, E_{1}, \nabla_{1}\right)\right)=\oplus_{p \in L_{0} \cap L_{1}} \operatorname{Hom}\left(\left(E_{0}\right)_{p},\left(E_{1}\right)_{p}\right) \otimes \Lambda \tag{4}
\end{equation*}
$$

for L_{0}, L_{1} transverse. Then given $p_{1}, \ldots, p_{k}, p_{i} \in L_{i-1} \cap L_{i}, w_{1}, \ldots, w_{k}, w_{i} \in$ $\operatorname{Hom}\left(\left(E_{i-1}\right)_{p_{i}},\left(E_{i}\right)_{p_{i}}\right)$, we let

$$
\begin{equation*}
m_{k}\left(w_{k}, \ldots, w_{1}\right)=\sum_{\substack{q \in L_{0} \cap L_{k} \\ \\ \operatorname{ind}([u])=0}}\left(\# \mathcal{M}\left(p_{1}, \ldots, p_{k}, q,[u], J\right)\right) T^{\omega(u)} \mathcal{P}_{[\partial u]}\left(w_{k}, \ldots, w_{1}\right) \tag{5}
\end{equation*}
$$

where $\mathcal{P}_{[\partial u]}\left(w_{k}, \ldots, w_{1}\right) \in \operatorname{Hom}\left(\left(E_{0}\right)_{q},\left(E_{k}\right)_{q}\right)$ is defined by

$$
\begin{equation*}
\mathcal{P}_{[\partial u]}\left(w_{k}, \ldots, w_{1}\right)=\gamma_{k} \circ w_{k} \circ \gamma_{k-1} \circ \cdots \circ \gamma_{1} \circ w_{1} \circ \gamma_{0} \tag{6}
\end{equation*}
$$

where parallel transport along ∂u from $q \rightarrow p_{1}$ gives $\gamma_{0} \in \operatorname{Hom}\left(\left(E_{0}\right)_{q},\left(E_{0}\right)_{p_{1}}\right)$, and similarly parallel transport from $p_{i} \rightarrow p_{i+1}$ using ∇_{i} gives $\gamma_{i} \in$ $\operatorname{Hom}\left(\left(E_{i}\right)_{p_{i}},\left(E_{i}\right)_{p_{i+1}}\right)$. For ∇_{i} flat, this only depends on $[\partial u]$. In particular, if E_{i} is the topologically trivial line bundle $\mathbb{C} \times L_{i}$ and ∇_{i} is a flat $U(1)$
connection (up to gauge equivalence), $\nabla_{i}=d+i A_{i}$ for A_{i} a closed 1-form, this encodes the data of holonomies $\pi_{1}\left(L_{i}\right) \rightarrow U(1)$. Then, using trivializations, we get $C F=\Lambda_{\mathbb{C}}^{\left|L_{0} \cap L_{1}\right|}$ with generators $p, w=\mathrm{id}: E_{0_{p}} \rightarrow E_{1_{p}}$ and m_{k} counts disks with weight $T^{\omega(u)} \cdot \operatorname{hol}(\partial u)$, where

$$
\begin{equation*}
\operatorname{hol}(\partial u)=\exp \left(i \sum_{j=0}^{k} \int_{\partial u_{j}} A_{j}\right) \tag{7}
\end{equation*}
$$

is the holonomy of parallel transport.
We can now construct our first iteration of the Fukaya category:

- The objects are $\mathcal{L}=(L, E, \nabla)$, where L is a compact spin Lagrangian (Z)-graded: $\mu_{L}=0$ with grading data) and (E, ∇) a flat hermitian vector bundle.
- The morphisms for transverse $\mathcal{L}_{0}, \mathcal{L}_{1}$ is given by $\operatorname{hom}\left(\mathcal{L}_{0}, \mathcal{L}_{1}\right)=C F^{*}$.

Issues:
(1) What if L_{0} is not transverse to L_{1} (in particular, if $L_{0}=L_{1}$)?
(2) What if L bounds disks?

For the first problem, see Seidel's book: the idea is to use a Hamiltonian perturbation ϕ_{H} to get L_{1} to be transverse to L_{0}, and define $C F^{*}\left(L_{0}, L_{1}\right)$ to be generated by $L_{0} \cap \phi_{H}\left(L_{1}\right)$ (the vector bundles carry without change). We perturb all the $\bar{\partial}$ equations by suitable terms: in the strip-like ends, we have $\frac{\partial u}{\partial s}+J\left(\frac{\partial u}{\partial t}+X_{H}(u)\right)=$ 0 for $H=H\left(L_{i-1}, L_{i}\right)$. We need a procedure to associate to (L, L^{\prime}) a Hamltonian $H\left(L, L^{\prime}\right)$, and to a sequence L_{0}, \ldots, L_{k} some compatible perturbation data, and further to show that different choices give equivalent A_{∞}-categories. Note that this will not be strictly unital, and will only get a homology unit.

Alternatively, one can use "Morse-Bott" Floer theory (e.g. FOOO). We define $C F^{*}(L, L)=C_{*}(L ; \Lambda)$ to be the space of singular chains on L : when defining the operations m_{k}, instead of strip-like ends, we have a marked point z on the boundary such that when evaluating at z, and require $u(z)$ to be in the chain. For instance, in the product m_{2}, one considers disks with boundary points z_{0}, z_{1}, z_{2} with three evaluation maps $\mathrm{ev}_{i}: \overline{\mathcal{M}}_{0,3}(M, L ; J, \beta) \rightarrow L$,

$$
\begin{equation*}
m_{2}\left(C_{2}, C_{1}\right)=\sum_{\beta \in \pi_{2}(X, L)} T^{\omega(\beta)}\left(e v_{0}\right)_{*}\left(\left[\overline{\mathcal{M}}_{0,3}(M, L ; J, \beta)\right] \cap e v_{1}^{*} C_{1} \cap e v_{2}^{*} C_{2}\right) \tag{8}
\end{equation*}
$$

For the class $\beta=0$, we find that the contribution of constant disks gives the intersection product on $C_{*}(L)$. The higher m_{k} follow similarly, though m_{1} does not allow $\beta=0$ and adds the classical ∂C instead. More generally, if $L_{0} \cap L_{1}$ have a "clean intersection" (i.e. $L_{0} \cap L_{1}$ is smooth), then we set $C F^{*}\left(L_{0}, L_{1}\right)=$ $C_{*}\left(L_{0} \cap L_{1} ; \Lambda\right)$.

