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MIRROR SYMMETRY: LECTURE 14 

DENIS AUROUX 

0.1. Lagrangian Floer Homology (contd). Let (M, ω) be a symplectic man
ifold, L0, L1 compact Lagrangian submanifolds intersecting transversely. Recall 
that the complexes CF (L0, L1) = Λ|L0∩L1| carry a differential m1, product m2, 
and higher operations 

mk(1) CF ∗(L0, L1) ⊗ · · · ⊗ CF ∗(Lk−1, Lk) → CF ∗(L0, Lk)[2 − k] 

We looked at J-holomorphic maps u from disks D2 with marked boundary 
points to disks in the manifold between L0, . . . , Lk with u(z0) = q L0∈ ∩
Lk, u(zi) = pi ∈ Li−1 ∩ Li. We find that the expected dimension of our man
ifold M(p1, . . . , pk, q, [u], J) is deg q − (deg p1 + deg pk) + k − 2. Assuming· · · 
transversality, 

mk(pk, . . . , p1) =	 (#M(p1, . . . , pk, q, [u], J))T ω(u)q 
(2)	 q ∈ L0 ∩ Lk 

ind([u]) = 0 

By looking at the ∂ (1-dimensional moduli space), we obtained the A∞ relations: 

Proposition 1. Assuming no bubbling of disks and spheres, ∀ m ≥ 1,(p1, . . . , pm), 
pi ∈ Li−1 ∩ Li, 

(−1)∗m�(pm, . . . , pj+k+1, mk(pj+k, . . . , pj+1), pj , . . . , p1) = 0 

(3) k, � ≥ 1 
k + � = m + 1

0 ≤ j ≤ � − 1


where ∗ = deg (p1) + + deg (pj ) + j.· · · 

This implies that m1 is a differential, m2 satisfies the Leibniz rule, and m2 is 
associative up to homotopy given by m3 (i.e. it is associative in HF ∗). 

Definition 1. An A∞ category is a linear “category” where morphism spaces 
are equipped with algebraic operations (mk)k≥1 satisfying the A∞-relations (those 
defined above). 

In our case, we have the following categories: 
1 
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•	 A Fukaya category is any of a number of A∞ categories whose objects 
are Lagrangian submanifolds (with extra data), the morphisms are Floer 
complexes, and the algebraic operations are as above. 

•	 So far we only have an ‘A∞-precategory” because the homomorphisms 
have only been defined for transverse pairs of objects. 

•	 At the homology level, we can also define the Donaldson-(Fukaya cate
gory) whose homomorphisms are the cohomologies HF , so that compo
sition is automatically associative. This is technically easier, but we lose 
some information that we need for mirror symmetry. 

•	 We eventually want to define our Fukaya category to be over C, rather 
than over the Novikov ring. So far, we have counted disks with weights 
T ω(u) ∈ Λ, and Gromov compactness tells us that there are only finitely 
many contributions below a certain area. That is, the sums may be 
infinite, but they converge in the Novikov ring. Physicists usually write 
the terms as e−2πω(u) ∈ R instead of T ω(u), and hope for convergence. 
Changing the value of T is equivalent to rescaling the symplectic form, 
i.e. working over Λ is equivalent to working with a family M, (ωt = tω), 
with T = e−2πt . We thus work near the large volume limit t → ∞ 
and compute Floer homologies for all t simultaneously. We call this the 
“convergent power series” Floer homology: even when defined, this is 
often not Hamiltonian isotopy invariant. 

•	 For Lagrangians Li equipped with (Ei, �i) → Li complex vector bundles 
with flat (unitary) connections. We think of these as local systems of 
coefficients on our Lagrangians. We define an associated complex with 
twisted coefficients: 

(4) CF ((L0, E0, �0), (L1, E1, �1)) = ⊕p∈L0∩L1 Hom((E0)p, (E1)p) ⊗ Λ 

for L0, L1 transverse. Then given p1, . . . , pk, pi ∈ Li−1∩Li, w1, . . . , wk, wi ∈
Hom((Ei−1)pi , (Ei)pi ), we let 

(5) 

mk(wk, . . . , w1) =	 (#M(p1, . . . , pk, q, [u], J))T ω(u)P[∂u](wk, . . . , w1) 

q ∈ L0 ∩ Lk


ind([u]) = 0


where P[∂u](wk, . . . , w1) ∈ Hom((E0)q, (Ek)q) is defined by 

(6) P[∂u](wk, . . . , w1) = γk ◦ wk ◦ γk−1 ◦ · · · ◦ γ1 ◦ w1 ◦ γ0 

where parallel transport along ∂u from q p1 gives γ0 ∈ Hom((E0)q, (E0)p1 ),→
and similarly parallel transport from pi → pi+1 using �i gives γi ∈
Hom((Ei)pi , (Ei)pi+1 ). For �i flat, this only depends on [∂u]. In particu
lar, if Ei is the topologically trivial line bundle C×Li and �i is a flat U(1) 
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connection (up to gauge equivalence), �i = d+iAi for Ai a closed 1-form, 
this encodes the data of holonomies π1(Li) U(1). Then, using trivial→ 
izations, we get CF = Λ

|
C 
L0∩L1| with generators p, w = id : E0p E1p→ 

and mk counts disks with weight T ω(u) hol(∂u), where � � 
· � 

k

(7)	 hol(∂u) = exp i Aj 

j=0 ∂uj 

is the holonomy of parallel transport. 
We can now construct our first iteration of the Fukaya category: 

•	 The objects are L = (L, E, �), where L is a compact spin Lagrangian 
(Z-graded: µL = 0 with grading data) and (E, �) a flat hermitian vector 
bundle. 

• The morphisms for transverse L0, L1 is given by hom(L0, L1) = CF ∗. 
Issues: 

(1) What if L0 is not transverse to L1 (in particular, if L0 = L1)? 
(2) What if L bounds disks? 

For the first problem, see Seidel’s book: the idea is to use a Hamiltonian perturba
tion φH to get L1 to be transverse to L0, and define CF ∗(L0, L1) to be generated 
by L0 ∩ φH (L1) (the vector bundles carry without change). We perturb all the ∂
equations by suitable terms: in the strip-like ends, we have ∂u +J(∂u +XH (u)) = 

∂s ∂t 
0 for H = H(Li−1, Li). We need a procedure to associate to (L, L�) a Hamltonian 
H(L, L�), and to a sequence L0, . . . , Lk some compatible perturbation data, and 
further to show that different choices give equivalent A∞-categories. Note that 
this will not be strictly unital, and will only get a homology unit. 

Alternatively, one can use “Morse-Bott” Floer theory (e.g. FOOO). We define 
CF ∗(L, L) = C∗(L; Λ) to be the space of singular chains on L: when defining 
the operations mk, instead of strip-like ends, we have a marked point z on the 
boundary such that when evaluating at z, and require u(z) to be in the chain. For 
instance, in the product m2, one considers disks with boundary points z0, z1, z2 

with three evaluation maps evi : M0,3(M, L; J, β) L, �	
→ 

(8) m2(C2, C1) = T ω(β)(ev0)∗([M0,3(M, L; J, β)] ∩ ev1 
∗C1 ∩ ev2 

∗C2) 
β∈π2(X,L) 

For the class β = 0, we find that the contribution of constant disks gives the 
intersection product on C∗(L). The higher mk follow similarly, though m1 does 
not allow β = 0 and adds the classical ∂C instead. More generally, if L0 ∩ L1 

have a “clean intersection” (i.e. L0 ∩ L1 is smooth), then we set CF ∗(L0, L1) = 
C∗(L0 ∩ L1; Λ). 




