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MIRROR SYMMETRY: LECTURE 11 

DENIS AUROUX 

0.1. Lagrangian Floer Homology (contd). Let (M,ω) be a symplectic man
ifold, L0, L1 compact Lagrangian submanifolds. Formally, Floer homology is 
Morse theory for the action functional on the path space P(L0, L1), which has as 
critical points the constant paths. More precisely, the actual functional is a map 
Ã : P̃(L0, L1) → R, where P̃(L0, L1) is the universal cover of the path space, i.e. 
pairs (γ, [u]) where γ is a path between L0 and L1 �and [u] is a homotopy between 
γ and some fixed base path ∗. Then A(γ, [u]) = u∗ω, and for v a vector field 
along γ, 

(1) dA(γ) v = ω( ˙ g(Jγ, v)dt = �J ˙γ, v)dt = ˙ γ, v�L2· 
[0,1] [0,1] 

The critical points are contant paths γ̇ = 0, and the gradient flow lines are 
J-holomorphic curves ∂γ γ.

∂s = −J ˙
However, no one has managed to run this Morse theory rigorously. The actual 

setup assumes L0, L1 are transverse, and as before, define the Novikov ring as 
Λ = { aiT λi | λi → ∞} and the Floer complex CF (L0, L1) as the free Λ-module 
Λ|L0∩L1| generated by L0 ∩ L1. We look at u : R × [0, 1] → M equipped with a 
compatible almost-complex structure J s.t. 

∂J u = 0, or ∂u + J ∂u = 0. • 
∂s ∂t 

• u(s, 0) ∈ L0, u(s, 1) ∈ L1 

• lims +∞ u(s, t) = p, lims→−∞ u(s, t) = q for {p, q} ⊂ L0 ∩ L1→ � � � � � 
E(u) = u∗ω = �∂u �2 

dsdt < ∞.• R×[0,1] ∂s 

We consider the space of solutions M(p, q, [u], J) for fixed p, q ∈ L0 ∩ L1, [u] a 
homotopy class as above, and J a given almost-complex structure. The above 
problem is a Fredholm problem, and the expected dimension of M = ind(∂J ) is 
called the Maslov index. The Maslov index comes from π1( Gr) = Z. Explicitly, 
let L0, L1(t)t∈[0,1] be Lagrangian subspaces of R2n s.t. L1(0), L1(1) intersect L0 

transversely. The Maslov index of (L1(t); L0) is the number of times that L1(t) 
is non-transverse to L0 with mutlipliticities and signs. For instance, for L0 = 
Rn ⊂ Cn , L1(t) = (eiθ1(t)R) × · · · × (eiθn(t)R) with all θi’s increasing past 0, the 
Maslov index is n. In general, given a homotopy u, we can trivialize u∗TM , and 
u∗ R×0(TL0), u

∗
R×1(TL1) are 2 paths of Lagrangian subspaces. We can trivialize | |
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2 DENIS AUROUX 

so that TL0 remains constant, and ind(u) is the Maslov index of the path TL1 

relative to TL0 as one goes from p to q. 
Now, we want to define 

∂(p) =	 #(M(p, q, φ, J)/R)T ω(φ) q· 

(2)	 q ∈ L0 ∩ L1 

φ ∈ π2(M,L0 ∪ L1) 
ind(φ) = 1 

The issues that arise are: transversality, compactness and bubbling, the orienta
tion of M, and whether ∂2 = 0. 

Theorem 1. If [ω] π2(M) = 0 and [ω] π2(M,Li) = 0, then ∂ is well-defined, ·	 · 
∂2 = 0, and HF (L0, L1) = H∗(CF, ∂) is independent of the chosen J and in
variant under Hamiltonian isotopies of L0 and/or L1. 

Corollary 1. If [ω] π2(M,L) = 0 and ψ is a Hamiltonian diffeomorphism s.t. ·	 � 
ψ(L), L are transverse, #(ψ(L) ∩ L) ≥ bi(L). 

This is a special case of Arnold’s conjecture: the rough idea is that H∗(L) ∼= 
HF (L, ψ(L)) and rk CF ≥ rk HF . 

Example. Consider T ∗S1 = R × S1, with L0 = {(0, θ) θ ∈ S1 = [0, 2π)}, L1 =∼	 |
{(a sin θ+b, θ)}. Then L0 ∩L1 = {p, q}, and the region between them decomposes 
into disks u, v. Then CF (L0, L1) = p⊕ q, ∂(p) = (T area(u) −T area(v))q, ∂(q) = 
0. In this case (c1(TM) = 0, as is the Maslov class of Li), ∃ a Z grading on CF 
(because the index is independent of [u]), e.g. deg p = 0, deg q = 1. We have 
two cases: 

= H∗(S1


if area(u) = area(v), then HF (L0, L1) = 0.

•	 if area(u) = area(v), then ∂ = 0, HF (L0, L1) ∼ , Λ). 

Return to our issues, one can achieve transversality for simple maps by picking 
J generic, but for multiply covered maps, we need sophisticated techniques such 
as domain-dependent J , multivalued perturbations, virtual cycles, or Kuranishi 
structures. To obtain an orientation of the moduli space, we need auxiliary 
data, e.g. a spin structure on L0, L1. For compactness, the Gromov compactness 
theorem implies that, given an energy bound, compactness holds after adding 
limiting configurations. There are three types of phenomena: 

•	 Bubbling of spheres: if |dun| → ∞ at an interior point, the resulting 
limit is a spherical bubble. The treatment is the same as in Gromov-
Witten invariants, and in good cases (if transversality is achieved), the 
congurations with sphere bubbles have real codimension ≥ 2 in M. 

•	 Bubbling of disks: if |dun| → ∞ at a boundary point, the resulting limit 
is a disk bubble at the boundary. Even assuming transversality, the space 
of these will have real codimension 1 in M. 
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•	 Breaking of strips: if energy escapes towards s → ±∞, i.e. reparameter
izing un(· − δn, ·) for |δn| → ∞ gives different limits, the resulting limit 
is a sequence of holomorphic strips (that is, what was a single holomor
phic strip with progressively thinning “necks” becomes several separate 
strips). 

Finally, we want to have ∂2 = 0. Asuming no bubbling, we consider M(p, q, φ, J)/R 
for J generic, φ ∈ π2, ind(φ) = 2. We expect a one-dimensional manifold, which 
is compactified by adding broken trajectories, i.e. 

(3) 
� r ∈ L0 ∩ L1 

(M(p, r, φ1, J)/R) × (M(p, r, φ2, J)/R) 

φ1#φ2 = φ 

The gluing theorem states that the resulting M(p, q, φ, J)/R is a manifold with 
boundary. Now, the number of ends of a compact oriented 1-manifold is 0, and 
thus so are the contributions to the coefficients of T ω(φ)q in ∂2(p). 




