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MIRROR SYMMETRY: LECTURE 9 

DENIS AUROUX 

1. The Quintic (contd.) 

To recall where we were, we had 
4

(1) Xψ = {(x0 : · · · : x4) ∈ P4 | fψ = 
0 

xi 
5 − 5ψx0x1x2x3x4 = 0} 

with 

= (Z/5Z)3(2) G = {(a0, . . . , a4) ∈ (Z/5Z)5 | ai = 0}/{(a, a, a, a, a)} ∼

acting by diagonal multiplication xi �→ xiξai , ξ = e2πi/5 . We obtained a crepant 
resolution X̌ψ of Xψ/G. This family has a LCSL point at z = (5ψ)−5 0. There →
was a volume form Ω̌ψ on X̌ψ induced by the G-invariant volume form Ωψ on Xψ 

by pullback via π : X̌ψ → Xψ/G. We computed its period on the 3-torus 

(3) T0 = {(x0 : · · · : x4) | x4 = 1, |x0| = |x1| = |x2| = δ, |x3| � 1} 

(or, on the mirror, Ť0 ⊂ X̌ψ) to be 

(4) Ωψ = −(2πi)3 
∞

(n!)

(5
5(5

n)! 
ψ)5n 

T0 n=0 

In terms of z = (5ψ)−5, the period is proportional to 
∞

(5n)! n(5) φ0(z) = z 
(n!)5 

n=0 

dSetting Θ = z 
dz : Θ( cnz

n) = ncnz
n, we obtained the Picard-Fuchs equation 

(6) θ4φ0 = 5z(5Θ + 1)(5Θ + 2)(5Θ + 3)(5Θ + 4)φ0 

Proposition 1. All periods Ω̌ψ satisfy this equation. 

Note that all period satisfy some 4th order differential equation: H3(X̌ψ, C) 
is 4-dimensional, so [Ω̌ψ], d [Ω̌ψ], · · · , d4 

[Ω̌ψ] are linearly related. Thus, so are 
dψ dψ4 

their integrals over any 3-cycle. 
1 
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2 DENIS AUROUX 

Idea of proof. We view Ωψ and its derivatives as residues. Let 

4

(7)	 Ω = (−1)i xidx0 ∧ · · · ∧ �dxi ∧ · · · ∧ dx4 

i=0 

be a form on C5 . It is homogeneous of degree 5 (not 0), so we need to multiply 
by something of degree −5 to get a form on P4 . If f, g are homogeneous, deg f = 
deg g + 5, g

f 
Ω is a meromorphic 4-form on P4 . For instance, 5

f
ψ

ψ 

Ω has poles along 
Xψ. Now, given a 4-form with poles along some hypersurface X, it has a residue 
on X which is ideally a 3-form on X, but is at least a class in H3(X, �C). 

Recall from complex analysis, if φ(z) has a pole at 0, res0(φ) = 
2
1 
πi S1 φ(z)dz. 

Now, let’s say that we have a 3-cycle C in X: we can associate a “tube” 4-cycle 
in P4 which is the preimage of C in the boundary of a tubular neighborhood of 
X. Then 

gΩ 1 gΩ 
(8)	 resX := 

f 2πi fC	 Γ 

If we only have simple poles along X, we get a 3-form characterized by 

(9)	 resX 
gΩ ∧ df = gΩ 
f 

at any point of X. � � 
Now, Ωψ = resXψ 

5ψΩ , and differentiating k times gives 
fψ 

∂k	 gkΩ 
(10)	

∂ψk 
[Ωψ] = resXψ fk+1 

ψ 

Thus we can express 

(11)	 Θ4[Ωψ] = resXψ 

g

f
Θ

5 

Ω 

ψ 

for some gΘ, and write 5z(5Θ + 1) (5Θ + 4)[Ωψ] in the same form. · · · 
We compare the residues of forms with order 5 poles along Xψ using Griffiths 

pole order reduction. Assume that φ is a 3-form with poles of order � along Xψ, 

1 � 
(12) φ = 

f � 
(−1)i+j (xigj − xj gi)dx0 ∧ · · · ∧ � dxj ∧ · · · ∧ dx4dxi ∧ · · · ∧ �

ψ i<j 

with deg (g0 · · · g4) = 5� − 4, then 

1 � ∂fψ 
� ∂gj

(13)	 dφ = 
f �+1 � gj 

∂xj 
− fψ 

∂xj 
Ω 

ψ j j 
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gj 
∂fψ 

∂xj 
)
f�

Ω 
+1 (the Jacobian ideal 
ψ 

In particular, if we have something of the form (

∂fψis the span of { 
∂xi 
}), it can be written as something with a lower order pole plus 

something exact. We obtain our result iteratively, showing in each stage that the 
top order term belongs to the Jacobian ideal, and reduce to a lower order term. 
When we get to order 1, we find that the residue is 0. � 

There is a theory of differential equations with regular singular points, i.e. 
differential equations of the form 

s−1

(14) Θsf + Bj (z)Θ
j f = 0 

dwhere Θ = z 
dz and Bj (z) are meromorphic functions which are holomorphic at 

z = 0. As with solving ordinary differential equations, we reduce to a 1st order 
system of differential equations Θw(z) = A(z)w(z), where 

� 

j=0 

⎞⎛ ⎞⎛0 1

f(z)


(15) A(z) =


⎜⎜⎜⎜⎝


⎟⎟⎟⎟⎠

, w(z) =


0 1
 ⎜⎜⎝

⎟⎟⎠


Θf(z)

. . . 

. .
.
 .
.
 .

0 1


Θs−1f(z)
· · ·


−B0(z) −Bs−1(z)· · · · · · · · · 

The fundamental theorem of these differential equations states that there exists 
a constant s × s matrix R and an s × s matrix of holomorphic functions S(z) s.t. 

log2 z
(16) Φ(z) = S(z) exp((log z)R) = S(z)(id + (log z)R + R2 + )

2 
· · · 

is a fundamental system of solutions to Θw(z) = A(z)w(z), and moreover if A(0) 
doesn’t have distinct eigenvalues differing by an integer, we can take R = A(0). 
This Φ is multivalued, and z �→ e2πiz gives Φ(z) �→ Φ(z)e2πiR (where e2πiR is the 
monodromy). 

In our case, Dφ = Θ4φ − 5z(5Θ + 1) (5Θ + 4)φ = 0, so the coefficient of Θ4 · · · 
is 1 − 55z, and the coefficients of Θ0 , are constant multiples of z. Then· · · , Θ3 

5z 
(17) Θ4φ − 

1 − 55z
P3(Θ) · φ = 0 

where P3 is independent of z. Then ⎞⎛ 
0 1 0 0

0 0 1 0


(18) R = A(0) =

⎜⎜⎝


⎟⎟⎠
0 0 0 1

0 0 0 0
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4 DENIS AUROUX 

is nilpotent, and our assumption holds. The corresponding monodromy is ⎛ ⎞
(2πi)2 (2πi)3 

1 2πi 
2 6⎜ (2πi)2 ⎟

2πiR ⎜ 0 1 2πi ⎟(19) T = e = ⎝ 2 ⎠0 0 1 2πi 
0 0 0 1 

If ω(z) = 
β Ω̌ψ is a period, then it is a solution of the Picard-Fuchs equation, and 

thus a linear combination of Φ(z)1i’s. There exists a basis b1, . . . , b4 of H3(X̌, C) 
s.t. 

bi 
Ω̌ψ = Φ(z)1i. The monodromy action in this basis is T (T maximally 

unipotent implies that 0 is LSCL). 

1.1. More periods of Ω̌ψ. The first fundamental solution we obtained is φ0 = 
Φ(z)11, which is invariant under monodromy and regular at z = 0. Since 
dim Ker (T − id) = 1, it is unique up to scaling, and φ0(z) = ∞ (5n)!zn 

. n=0 (n!)5 

We next obtain φ1 = Φ(z)12 s.t. φ1(e
2πiz) = φ1(z) + 2πiφ0(z), which is unique 

up to multiples of φ0. Since Φ(z) = S(z) exp(R log z), φ1(z) = φ0(z) log z + φ̃(z), 
with φ̃(z) holomorphic. Now 

(20) Θj (f(z) log z) = (Θj f) log z + j(Θj−1f) 

If we write F (x) = x4 − 5z 
�

j
4
=1(5x + j), then 

Dφ1(z) = F (Θ)(φ0(z) log z + φ̃(z)) 
(21) 

= (F (Θ)φ0) log z + F �(Θ)φ0 + F (Θ)φ̃

Since 0 = Dφ0 = Dφ1, we find Dφ̃(z) = −F �(Θ)φ0(z). This gives a recurrence 
relation on the coefficients of φ̃(z), and one obtains: 

˜
∞

(5n)! 
5n

1 n(22) φ(z) = 5 z 
(n!)5 j

n=1 j=n+1 

We want canonical coordinates on the moduli space of complex structures: there 
are β0, β1 ∈ H3(X̌, Z), with monodromy β0 �→ β0, β1 �→ β1 + β0, and 

Ω̌ = Cφ0(z) 

(23) �β0 

Ω̌ = C �φ0(z) + C ��φ1(z) 
β1 
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ˇ ˇThe monodromy acts on the latter by 
β1 

Ω �→ 
β1+β0 

Ω, implying that 2πiC �� = 
C. Thus, the canonial coordinates are 

Ω̌

w = �β1


Ω̌

β0 

C � 1 φ1 
= + 
C 2πi φ0 

(24) 
1 1 1 φ̃

= log c2 + log z + 
2πi 2πi 2πi φ0 

φ̃(z) 
q = exp(2πiw) = c2z exp 

φ0(z) 




