MIT OpenCourseWare
http://ocw.mit.edu

18.969 Topics in Geometry: Mirror Symmetry

Spring 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

MIRROR SYMMETRY: LECTURE 9

DENIS AUROUX

1. The Quintic (contd.)

To recall where we were, we had

$$
\begin{equation*}
X_{\psi}=\left\{\left(x_{0}: \cdots: x_{4}\right) \in \mathbb{P}^{4} \mid f_{\psi}=\sum_{0}^{4} x_{i}^{5}-5 \psi x_{0} x_{1} x_{2} x_{3} x_{4}=0\right\} \tag{1}
\end{equation*}
$$

with

$$
\begin{equation*}
G=\left\{\left(a_{0}, \ldots, a_{4}\right) \in(\mathbb{Z} / 5 \mathbb{Z})^{5} \mid \sum a_{i}=0\right\} /\{(a, a, a, a, a)\} \cong(\mathbb{Z} / 5 \mathbb{Z})^{3} \tag{2}
\end{equation*}
$$

acting by diagonal multiplication $x_{i} \mapsto x_{i} \xi^{a_{i}}, \xi=e^{2 \pi i / 5}$. We obtained a crepant resolution X_{ψ} of X_{ψ} / G. This family has a LCSL point at $z=(5 \psi)^{-5} \rightarrow 0$. There was a volume form $\check{\Omega}_{\psi}$ on \check{X}_{ψ} induced by the G-invariant volume form Ω_{ψ} on X_{ψ} by pullback via $\pi: \check{X}_{\psi} \rightarrow X_{\psi} / G$. We computed its period on the 3 -torus

$$
\begin{equation*}
T_{0}=\left\{\left(x_{0}: \cdots: x_{4}\right)\left|x_{4}=1,\left|x_{0}\right|=\left|x_{1}\right|=\left|x_{2}\right|=\delta,\left|x_{3}\right| \ll 1\right\}\right. \tag{3}
\end{equation*}
$$

(or, on the mirror, $\check{T}_{0} \subset \check{X}_{\psi}$) to be

$$
\begin{equation*}
\int_{T_{0}} \Omega_{\psi}=-(2 \pi i)^{3} \sum_{n=0}^{\infty} \frac{(5 n)!}{(n!)^{5}(5 \psi)^{5 n}} \tag{4}
\end{equation*}
$$

In terms of $z=(5 \psi)^{-5}$, the period is proportional to

$$
\begin{equation*}
\phi_{0}(z)=\sum_{n=0}^{\infty} \frac{(5 n)!}{(n!)^{5}} z^{n} \tag{5}
\end{equation*}
$$

Setting $\Theta=z \frac{d}{d z}: \Theta\left(\sum c_{n} z^{n}\right)=\sum n c_{n} z^{n}$, we obtained the Picard-Fuchs equation

$$
\begin{equation*}
\theta^{4} \phi_{0}=5 z(5 \Theta+1)(5 \Theta+2)(5 \Theta+3)(5 \Theta+4) \phi_{0} \tag{6}
\end{equation*}
$$

Proposition 1. All periods $\int \check{\Omega}_{\psi}$ satisfy this equation.
Note that all period satisfy some 4 th order differential equation: $H^{3}\left(\check{X}_{\psi}, \mathbb{C}\right)$ is 4-dimensional, so $\left[\check{\Omega}_{\psi}\right], \frac{d}{d \psi}\left[\check{\Omega}_{\psi}\right], \cdots, \frac{d^{4}}{d \psi^{4}}\left[\check{\Omega}_{\psi}\right]$ are linearly related. Thus, so are their integrals over any 3-cycle.

Idea of proof. We view Ω_{ψ} and its derivatives as residues. Let

$$
\begin{equation*}
\bar{\Omega}=\sum_{i=0}^{4}(-1)^{i} x_{i} d x_{0} \wedge \cdots \wedge \widehat{d x_{i}} \wedge \cdots \wedge d x_{4} \tag{7}
\end{equation*}
$$

be a form on \mathbb{C}^{5}. It is homogeneous of degree 5 (not 0), so we need to multiply by something of degree -5 to get a form on \mathbb{P}^{4}. If f, g are homogeneous, $\operatorname{deg} f=$ $\operatorname{deg} g+5, \frac{g \bar{\Omega}}{f}$ is a meromorphic 4 -form on \mathbb{P}^{4}. For instance, $\frac{5 \psi \bar{\Omega}}{f_{\psi}}$ has poles along X_{ψ}. Now, given a 4 -form with poles along some hypersurface X, it has a residue on X which is ideally a 3 -form on X, but is at least a class in $H^{3}(X, \mathbb{C})$.

Recall from complex analysis, if $\phi(z)$ has a pole at $0, \operatorname{res}_{0}(\phi)=\frac{1}{2 \pi i} \int_{S^{1}} \phi(z) d z$. Now, let's say that we have a 3-cycle C in X : we can associate a "tube" 4-cycle in \mathbb{P}^{4} which is the preimage of C in the boundary of a tubular neighborhood of X. Then

$$
\begin{equation*}
\int_{C} \operatorname{res}_{X}\left(\frac{g \bar{\Omega}}{f}\right):=\frac{1}{2 \pi i} \int_{\Gamma} \frac{g \bar{\Omega}}{f} \tag{8}
\end{equation*}
$$

If we only have simple poles along X, we get a 3 -form characterized by

$$
\begin{equation*}
\operatorname{res}_{X}\left(\frac{g \bar{\Omega}}{f}\right) \wedge d f=g \bar{\Omega} \tag{9}
\end{equation*}
$$

at any point of X.
Now, $\Omega_{\psi}=\operatorname{res}_{X_{\psi}}\left(\frac{5 \psi \bar{\Omega}}{f_{\psi}}\right)$, and differentiating k times gives

$$
\begin{equation*}
\frac{\partial^{k}}{\partial \psi^{k}}\left[\Omega_{\psi}\right]=\operatorname{res}_{X_{\psi}}\left(\frac{g_{k} \bar{\Omega}}{f_{\psi}^{k+1}}\right) \tag{10}
\end{equation*}
$$

Thus we can express

$$
\begin{equation*}
\Theta^{4}\left[\Omega_{\psi}\right]=\operatorname{res}_{X_{\psi}}\left(\frac{g_{\Theta} \bar{\Omega}}{f_{\psi}^{5}}\right) \tag{11}
\end{equation*}
$$

for some g_{Θ}, and write $5 z(5 \Theta+1) \cdots(5 \Theta+4)\left[\Omega_{\psi}\right]$ in the same form.
We compare the residues of forms with order 5 poles along X_{ψ} using Griffiths pole order reduction. Assume that ϕ is a 3 -form with poles of order ℓ along X_{ψ},

$$
\begin{equation*}
\phi=\frac{1}{f_{\psi}^{\ell}} \sum_{i<j}(-1)^{i+j}\left(x_{i} g_{j}-x_{j} g_{i}\right) d x_{0} \wedge \cdots \wedge \widehat{d x}_{i} \wedge \cdots \wedge \widehat{d x}_{j} \wedge \cdots \wedge d x_{4} \tag{12}
\end{equation*}
$$

with $\operatorname{deg}\left(g_{0} \cdots g_{4}\right)=5 \ell-4$, then

$$
\begin{equation*}
d \phi=\frac{1}{f_{\psi}^{\ell+1}}\left(\ell \sum_{j} g_{j} \frac{\partial f_{\psi}}{\partial x_{j}}-f_{\psi} \sum_{j} \frac{\partial g_{j}}{\partial x_{j}}\right) \bar{\Omega} \tag{13}
\end{equation*}
$$

In particular, if we have something of the form $\left(\sum g_{j} \frac{\partial f_{\psi}}{\partial x_{j}}\right) \frac{\bar{\Omega}}{f_{\psi}^{l+1}}$ (the Jacobian ideal is the span of $\left\{\frac{\partial f_{\psi}}{\partial x_{i}}\right\}$), it can be written as something with a lower order pole plus something exact. We obtain our result iteratively, showing in each stage that the top order term belongs to the Jacobian ideal, and reduce to a lower order term. When we get to order 1 , we find that the residue is 0 .

There is a theory of differential equations with regular singular points, i.e. differential equations of the form

$$
\begin{equation*}
\Theta^{s} f+\sum_{j=0}^{s-1} B_{j}(z) \Theta^{j} f=0 \tag{14}
\end{equation*}
$$

where $\Theta=z \frac{d}{d z}$ and $B_{j}(z)$ are meromorphic functions which are holomorphic at $z=0$. As with solving ordinary differential equations, we reduce to a 1 st order system of differential equations $\Theta w(z)=A(z) w(z)$, where

$$
A(z)=\left(\begin{array}{ccccc}
0 & 1 & & & \tag{15}\\
& 0 & 1 & & \\
& & \ddots & \ddots & \\
& & \cdots & 0 & 1 \\
-B_{0}(z) & \cdots & \cdots & \cdots & -B_{s-1}(z)
\end{array}\right), w(z)=\left(\begin{array}{c}
f(z) \\
\Theta f(z) \\
\vdots \\
\Theta^{s-1} f(z)
\end{array}\right)
$$

The fundamental theorem of these differential equations states that there exists a constant $s \times s$ matrix R and an $s \times s$ matrix of holomorphic functions $S(z)$ s.t.

$$
\begin{equation*}
\Phi(z)=S(z) \exp ((\log z) R)=S(z)\left(\operatorname{id}+(\log z) R+\frac{\log ^{2} z}{2} R^{2}+\cdots\right) \tag{16}
\end{equation*}
$$

is a fundamental system of solutions to $\Theta w(z)=A(z) w(z)$, and moreover if $A(0)$ doesn't have distinct eigenvalues differing by an integer, we can take $R=A(0)$. This Φ is multivalued, and $z \mapsto e^{2 \pi i} z$ gives $\Phi(z) \mapsto \Phi(z) e^{2 \pi i R}$ (where $e^{2 \pi i R}$ is the monodromy).

In our case, $\mathcal{D} \phi=\Theta^{4} \phi-5 z(5 \Theta+1) \cdots(5 \Theta+4) \phi=0$, so the coefficient of Θ^{4} is $1-5^{5} z$, and the coefficients of $\Theta^{0}, \cdots, \Theta^{3}$ are constant multiples of z. Then

$$
\begin{equation*}
\Theta^{4} \phi-\frac{5 z}{1-5^{5} z} P_{3}(\Theta) \cdot \phi=0 \tag{17}
\end{equation*}
$$

where P_{3} is independent of z. Then

$$
R=A(0)=\left(\begin{array}{llll}
0 & 1 & 0 & 0 \tag{18}\\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

is nilpotent, and our assumption holds. The corresponding monodromy is

$$
T=e^{2 \pi i R}=\left(\begin{array}{cccc}
1 & 2 \pi i & \frac{(2 \pi i)^{2}}{2} & \frac{(2 \pi i)^{3}}{6} \tag{19}\\
0 & 1 & 2 \pi i & \frac{(2 \pi i)^{2}}{2} \\
0 & 0 & 1 & 2 \pi i \\
0 & 0 & 0 & 1
\end{array}\right)
$$

If $\omega(z)=\int_{\beta} \check{\Omega}_{\psi}$ is a period, then it is a solution of the Picard-Fuchs equation, and thus a linear combination of $\Phi(z)_{1 i}$'s. There exists a basis b_{1}, \ldots, b_{4} of $H_{3}(\check{X}, \mathbb{C})$ s.t. $\int_{b_{i}} \check{\Omega}_{\psi}=\Phi(z)_{1 i}$. The monodromy action in this basis is T (T maximally unipotent implies that 0 is LSCL).
1.1. More periods of $\check{\Omega}_{\psi}$. The first fundamental solution we obtained is $\phi_{0}=$ $\Phi(z)_{11}$, which is invariant under monodromy and regular at $z=0$. Since $\operatorname{dim} \operatorname{Ker}(T-\mathrm{id})=1$, it is unique up to scaling, and $\phi_{0}(z)=\sum_{n=0}^{\infty} \frac{(5 n)!z^{n}}{(n!)^{5}}$. We next obtain $\phi_{1}=\Phi(z)_{12}$ s.t. $\phi_{1}\left(e^{2 \pi i} z\right)=\phi_{1}(z)+2 \pi i \phi_{0}(z)$, which is unique up to multiples of ϕ_{0}. Since $\Phi(z)=S(z) \exp (R \log z), \phi_{1}(z)=\phi_{0}(z) \log z+\tilde{\phi}(z)$, with $\tilde{\phi}(z)$ holomorphic. Now

$$
\begin{equation*}
\Theta^{j}(f(z) \log z)=\left(\Theta^{j} f\right) \log z+j\left(\Theta^{j-1} f\right) \tag{20}
\end{equation*}
$$

If we write $F(x)=x^{4}-5 z \prod_{j=1}^{4}(5 x+j)$, then

$$
\begin{align*}
\mathcal{D} \phi_{1}(z) & =F(\Theta)\left(\phi_{0}(z) \log z+\tilde{\phi}(z)\right) \\
& =\left(F(\Theta) \phi_{0}\right) \log z+F^{\prime}(\Theta) \phi_{0}+F(\Theta) \tilde{\phi} \tag{21}
\end{align*}
$$

Since $0=\mathcal{D} \phi_{0}=\mathcal{D} \phi_{1}$, we find $\mathcal{D} \tilde{\phi}(z)=-F^{\prime}(\Theta) \phi_{0}(z)$. This gives a recurrence relation on the coefficients of $\tilde{\phi}(z)$, and one obtains:

$$
\begin{equation*}
\tilde{\phi}(z)=5 \sum_{n=1}^{\infty} \frac{(5 n)!}{(n!)^{5}}\left(\sum_{j=n+1}^{5 n} \frac{1}{j}\right) z^{n} \tag{22}
\end{equation*}
$$

We want canonical coordinates on the moduli space of complex structures: there are $\beta_{0}, \beta_{1} \in H_{3}(\check{X}, \mathbb{Z})$, with monodromy $\beta_{0} \mapsto \beta_{0}, \beta_{1} \mapsto \beta_{1}+\beta_{0}$, and

$$
\begin{align*}
& \int_{\beta_{0}} \check{\Omega}=C \phi_{0}(z) \\
& \int_{\beta_{1}} \check{\Omega}=C^{\prime} \phi_{0}(z)+C^{\prime \prime} \phi_{1}(z) \tag{23}
\end{align*}
$$

The monodromy acts on the latter by $\int_{\beta_{1}} \check{\Omega} \mapsto \int_{\beta_{1}+\beta_{0}} \check{\Omega}$, implying that $2 \pi i C^{\prime \prime}=$ C. Thus, the canonial coordinates are

$$
\begin{align*}
w & =\frac{\int_{\beta_{1}} \check{\Omega}}{\int_{\beta_{0}} \check{\Omega}} \\
& =\frac{C^{\prime}}{C}+\frac{1}{2 \pi i} \frac{\phi_{1}}{\phi_{0}} \\
& =\frac{1}{2 \pi i} \log c_{2}+\frac{1}{2 \pi i} \log z+\frac{1}{2 \pi i} \frac{\tilde{\phi}}{\phi_{0}} \tag{24}\\
q & =\exp (2 \pi i w)=c_{2} z \exp \left(\frac{\tilde{\phi}(z)}{\phi_{0}(z)}\right)
\end{align*}
$$

