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MIRROR SYMMETRY: LECTURE 8 

DENIS AUROUX 

Last time: 18.06 Linear Algebra. 
Today: 18.02 Multivariable Calculus. / 18.04 Complex Variables 
Thursday: 18.03 Differential Equations 

1. Mirror Symmetry Conjecture 

Last time, we said that if we have a large complex structure limit (LCSL) 
degeneration, then we have a special basis (α0, . . . , αS , β0, . . . , βS ) of H3(X, Z) 
s.t. β0 is invariant under monodromy and β1, . . . , βs are mapped by monodromy 

by βi
φj 
βi − mjiβ0	 for mji ∈ Z. We decided that we would normalize so that � 

→	 � φj 

β0 
Ω = 1, and let wi = 

βi 
Ω (wi → wi − mji) and qi = exp(2πiwi) (which we 

called canonical coordinates). 

Example. Given a family of tori T 2 with monodromy 
1 1 

, 
� 
a Ω = 1, 

� 
b Ω = 

0 1 
τ (precisely what you get identifying the elliptic curve with R2/Z ⊕ τZ), q = 
exp(2πiτ). 

If ei is a basis of H2( ˇ	 ahler cone, we obtain coordinates on the X, Z), ei in the K¨ � 
complexified Kähler moduli space: if [B + iω] = ťiei, let q̌i = exp(2πiťi), ťi = 

B + iω. 
e∗ 
i 

Example. Returning to our example, q̌ = exp(2πi 
T 2 B + iω). 

Conjecture 1 (Mirror Symmetry). Let f : X → (D∗)S be a family of Calabi-
Yau 3-folds with LCSL at 0. Then ∃ a Calabi-Yau 3-fold X̌ and choices of 
bases α0, . . . , αS , β0, . . . , βS of H3(X, Z), e1, . . . , eS of H2(X, Z) s.t. under the 
map m : (D∗)S → MKah(X̌), (q1, . . . , qS ) �→ (q̌i, . . . , q̌S ), q̌i = qi, we have a 
coincidence of Yukawa couplings 

(1)	
∂
,
∂
, 
∂ X ∂

,
∂
, 
∂ X̌�

∂qi ∂qj ∂qk 
�p = �

∂q̌i ∂q̌j ∂q̌k 
�m(p) 

where the LHS corresponds to 
X Ω ∧ (

∂q
∂ 
i ∂q
∂ 
j ∂q
∂ 
k 
Ω) and the RHS to a (1, 1)

X̌ ∂	 ∂coupling, i.e. the Gromov-Witten invariants �ei, ej , ek�0,β (since 2πiq̌i ∂q̌i = 
∂ťi 

= 
ei ∈ H1,1 etc.). 
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Remark. A more grown-up version of mirror symmetry would give you an equiv-
TX) with its usual product structure and H∗(X̌, C)alence between H∗(X, 

with the quantum twisted product structure as Frobenius algebras (making this 
concrete would require more work). 

1.1. Application to the Quintic (See Gross-Huybrechts-Joyce, after 
Candelas-de la Ossa-Greene-Parkes). Last time, we defined 

4

(2) Xψ = {(x0 : · · · : x4) ∈ P4 | fψ = 
0 

x 5 − 5ψx0x1x2x3x4 = 0}i 

with 

= (Z/5Z)3(3) G = {(a0, . . . , a4) ∈ (Z/5Z)5 | ai = 0}/{(a, a, a, a, a)} ∼

acting by diagonal multiplication xi �→ xiξai , ξ = e2πi/5 . We obtained a crepant 
resolution X̌ψ of Xψ/G (its singularities are Cij = {xi = xj = 0}/G), which has 
h1,1 = 101, h2,1 = 1, and h3 = 4. The map (x0 : . . . : x4) �→ (ξax0 : x1 : . . . : x4) 
gives Xψ = Xξφ, so let z = (5ξ)−5 . Then z 0, i.e. ψ → ∞, gives a toric ∼ →
degeneration of Xψ to {x0x1x2x3x4 = 0}. This is maximally unipotent, as the 
monodromy on H3 is given by ⎞⎛ 

(4)

⎜⎜⎝


1 1 0 0

0 1 1 0

0 0 1 1

0 0 0 1


⎟⎟⎠


so it is LCSL. We want to compute the periods of the holomorphic volume form 
on X̌ψ. There is a volume form Ω̌ψ on X̌ψ induced by the G-invariant volume 

X̌ψ We want to find a 3-cycle form Ωψ on Xψ by pullback via π : Xψ/G.→

β0 ∈ H3(X̌ψ) that survives the degeneration. 
tori in component P3’s, e.g. 

For z = 0, { xi = 0} contains 

(5) T0 = {(x0 : · · · : x4) | x4 = 1, |x0| = |x1| = |x2| = δ, x3 = 0} 

We want to extend it to z =� 0. Take x4 = 1, |x0| = |x1| = |x2| = δ: then x3 

should be given by the root of fψ which tends to 0 as ψ →∞. We need to show 
that there is only one such value (giving us a simple degeneration rather than a 
branched covering). Explicitly, set x3 = (ψx0x1x2)

1/4y: 

(6) fψ = 0 ⇔ x0
5 + x1

5 + x 52 + (ψx0x1x2)
5/4 y 5 + 1 − 5(ψx0x1x2)

5/4 y 

i.e. 

y5 x0
5 + x1

5 + x2
5 + 1 

(7) y = + 
5 5(ψx0x1x2)5/4 
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4One root is y ∼ ψ−5/4 0, with the other four roots converging to 
√

5. So 
for x3, we have one root 

→
∼ ψ−1, and 4 roots ∼ ψ1/4 . Now, G acts freely on 

T0 ⊂ Xψ, and T0/G is contained in the smooth part of Xψ/G and gives a torus 
Ť0 ⊂ X̌ψ, β0 = [Ť0]. Because T0, Ť0 still make sense at z = 0, their class is 
preserved by the monodromy. 

Next, we want to get the required holomorphic volume form. In the affine 
subset x4 = 1, let Ωψ be the 3-form on Xψ characterized uniquely by 

(8) Ωψ ∧ dfψ = 5ψdx0 ∧ dx1 ∧ dx2 ∧ dx3 

∂fψat each point of Xψ. At a point where 
∂x3 

= 0, (� x0, x1, x2) are local coordinates, 
and 

5ψdx0 ∧ dx1 ∧ dx2 5ψdx0 ∧ dx1 ∧ dx2 
(9) Ωψ = 

∂fψ 
=

5x3
4 − 5ψx0x1x2 

∂x3 

Defining it in terms of other coordinates, we get the same formula on restrictions. 
We need to extend this to where x4 = 0. We could rewrite this using homogeneous 
coordinates, but note that the corresponding divisor is just the canonical divisor: 
since Xψ is Calabi-Yau, this divisor has no zeroes or poles at x4 = 0. Since Ωψ 

is G-invariant, it induces a 3-form on (Xψ/G)nonsing and lifts and extends to Ω̌ψ 

on X̌ψ with 

1 
(10) Ω̌ψ = Ωψ 

ˇ 53 
T0 T0 

Tool: we have the residue formula 

1 � 
(11) f(z)dz = resf (zi)

2πi S1 
zi poles of f ∈D2 

So let T 4 = {|x0| = |x1| = |x2| = |x3| = δ, x4 = 1}. Then � � � � � 
1 5ψdx0dx1dx2dx3 1 5ψdx3 

(12) = dx0dx1dx2
2πi T 4 fψ T 3 2πi S1 fψ x0x1x2 

where fψ has a unique pole at x3. The residue is precisely 5ψ , giving us 
(∂f/∂x3) 

5ψ 
(13) = dx0dx1dx2 = Ωψ 

T0 
(∂f/∂x3) T0 
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So 
1	 dx0dx1dx2dx3

Ωψ = 
2πi (5ψ)−1(x5

0 + x5
1 + x5

2 + x5
3 + 1) − x0x1x2x3T0 T 4 

(14)	 = − 
1 

� 
dx0dx1dx2dx3 

� 

1 − (5ψ)−1 x0
5 + x1

5 + x2
5 + x3

5 + 1 
�−1 

2πi T 4 x0x1x2x3 x0x1x2x3 �	 5 5 5 51 
∞ � 

dx0dx1dx2dx3 (x0 + x1 + x2 + x3 + 1)m 

= −
2πi T 4 x0x1x2x3 

· 
(5ψ)m(x0x1x2x3)m 

n=0 

We want to find the coefficient of 1 in the latter term. We obviously need 
m = 5n (the numerator only has powers which are a multiple of 5), and want 
the coefficient of x5nx5nx5nx5n in (x5 5 5 5

3 + 1)5n, which is (5n)! We 0 1 2 3 0 + x1 + x2 + x
(n!)5 . 

finally obtain 
∞

(15)	
T0 

Ωψ = −(2πi)3 

n=0 
(n!)

(5
5(5

n)! 
ψ)5n 

In terms of z = (5ψ)−5, the period is proportional to 
∞

(5n)! n(16)	 φ0(z) = z 
(n!)5 

n=0 

Set an = (5n)! Then
(n!)5 . 

(17) (n + 1)4 an+1 = 
(5n + 5)! 

= 5(5n + 4)(5n + 3)(5n + 2)(5n + 1)an
(n!)5(n + 1) 

dSetting Θ = z 
dz : Θ( cnz

n) = ncnz
n, giving us the Picard-Fuchs equation 

(18) Θ4φ0 = 5z(5Θ + 1)(5Θ + 2)(5Θ + 3)(5Θ + 4)φ0 

Next time, we will show that there is a unique regular solution, and a unique 
solution with logarithmic poles to our original problem. 




