9 Lecture 9 (Notes: K. Venkatram)

Last time, we talked about the geometry of a connected lie group G. Specifically, for any a in the corresponding Lie algebra \mathfrak{g}, one can define $\left.a^{L}\right|_{g}=L_{g *} a$ and choose $\theta^{L} \in \Omega^{1}(G, \mathfrak{g})$ s.t. $\theta^{L}\left(a^{L}\right)=a$. For instance, for GL_{n}, with coordinates $g=\left[g_{i j}\right]$, one has $\theta^{L}=g^{-1} d g$, and similarly $\theta^{R}=d g g^{-1}$.This implies that $d g \wedge \theta^{L}+g d \theta^{L}=0 \Longrightarrow d \theta^{L}+\theta^{L} \wedge \theta^{L}=0 \Longrightarrow d \theta^{L}+\frac{1}{2}\left[\theta^{L}, \theta^{L}\right]=0$, the latter of which is the Maurer-Cartan equation.

Problem. 1. Extend this proof so that it works in the general case.
2. Show $j^{*} \theta^{R}=-\theta^{L}$.
3. Show $d \theta^{R}-\frac{1}{2}\left[\theta^{R}, \theta^{R}\right]=0$.
4. Show $\left.\theta^{R}\left(a^{L}\right)\right|_{g}=\operatorname{Ad}_{g} a \forall a \in \mathfrak{g}, g \in G$.

9.1 Bilinar forms on groups

Let G be a connected real Lie group, B a symmetric nondegenerate bilinear form on \mathfrak{g}. This extends to a left-invariant metric on G, and B is invariant under right translation
$\Leftrightarrow B([X, Y], Z)+B(Y,[X, Z])=0 \forall X, Y, Z$. If this is true, we obtain a bi-invariant (pseudo-Riemannian) metric on G.
Remark. Geodesics through e are one-parameter subgroups $\Leftrightarrow B$ is bi-invariant. See Helgason for Riemannian geometry of Lie groups and homogeneous spaces.
Example. Let B be the Killing form on a semisimple Lie group, i.e. $B(a, b)=\operatorname{Tr}_{g}\left(\operatorname{ad}_{a}\right.$ ad $\left._{b}\right)$ for $\left.\mathfrak{s}\right|_{m}, \mathfrak{s} \circ m, \mathfrak{s} p_{m}$ a constant multiple of $\operatorname{Tr}(X, Y)$. Now, we can form the Cartan 3-form

$$
\begin{equation*}
H=\frac{1}{12} B\left(\theta^{L},\left[\theta^{L}, \theta^{L}\right]\right)=\frac{1}{12} B\left(\theta^{R},\left[\theta^{R}, \theta^{R}\right]\right) \tag{7}
\end{equation*}
$$

This H is bi-invariant, and thus closed. When G is simple, compact, and simply connected, the Killing form gives $\lambda[H]$ as a generator for $H^{3}(G, \mathbb{Z})=\mathbb{Z}$. (See Brylinski.) For instance, given $\mathfrak{g}=\left.\mathfrak{s}\right|_{n}, \theta^{L}=g^{-1} d g$, one has $H=\operatorname{Tr}\left(\theta^{L} \wedge \theta^{L} \wedge \theta^{L}\right)$ i.e. $H=\operatorname{Tr}\left(g^{-1} d g\right)^{3}$.

9.1.1 Key calculation

Let $m, p_{1}, p_{2}: G \times G \rightarrow G$ be the multiplication and projection maps respectively. Then

$$
\begin{align*}
m^{*} H & =\operatorname{Tr}\left((g h)^{-1} d(g h)\right)^{3}=\operatorname{Tr}\left(h^{-1} g^{-1}(g d h+d g h)\right)^{3} \tag{8}\\
& =\operatorname{Tr}\left(h^{-1} g h\right)^{3}+\operatorname{Tr}\left(g^{-1} d g\right)^{3}+\operatorname{Tr}\left(\left(d h h^{-1}\right)^{2} g^{-1} d g\right)+\operatorname{Tr}\left(d h h^{-1}\left(g^{-1} d g\right)^{2}\right)
\end{align*}
$$

Now, define $\theta=d h h^{-1}, \Omega=g^{-1} d g$, so $d \theta=\theta \wedge \theta$ and $d \Omega=-\Omega \wedge \Omega$. Then

$$
\begin{align*}
d \operatorname{Tr}\left(d h h^{-1} g^{-1} d g\right) & =d \operatorname{Tr}(\theta \wedge \Omega)=\operatorname{Tr}(d \theta \wedge \Omega-\theta \wedge d \Omega) \\
& =\operatorname{Tr}(\theta \wedge \theta \wedge \Omega+\theta \wedge \Omega \wedge \Omega) \tag{9}
\end{align*}
$$

So, $m^{*} H-p_{1}^{*} H-p_{2}^{*} H=d \tau$, where $\tau=\operatorname{Tr}\left(d h h^{-1} g^{-1} d g\right)=B\left(p_{1}^{*} \theta^{L}, p_{2}^{*} \theta^{R}\right) \in \Omega^{2}(G \times G)$.
Now, recall that given a metric $g: V \rightarrow V^{*}$, we have a decomposition $V \oplus V^{*}=C_{+} \oplus C_{-}$for $C_{ \pm}=\Gamma_{ \pm}$.
Moreover, any Dirac structure $L \subset V \oplus V^{*}$ can be written as the graph of $A \in O(V, \mathfrak{g})$ thought of as $A: C_{+} \rightarrow C_{-}$. NOw, for $X \in V$, let $X^{ \pm}=X \pm g X \in C_{ \pm}$. Then $L_{ \pm}^{A}=\left\{X^{+} \pm(A X)^{-} \mid X \in V\right\}$ are the Dirac structures. Note that

$$
\begin{equation*}
\left\langle X^{+} \pm(A X)^{-}, X^{+} \pm(A X)^{-}\right\rangle=g(X, X)-g(A X, A X)=0 \tag{10}
\end{equation*}
$$

Let B be a bi-invariant metric on G. Then the map $A_{x}=L_{x^{-1} *} R_{x *}: T_{x} G \rightarrow T_{x} G, a^{L} \mapsto a^{R}$ is orthogonal for B and $\operatorname{ad}(G)$-invariant, since

where $\operatorname{ad}_{g *}=L_{g *} R_{g^{-1} *}$. Thus, we find that

$$
\begin{equation*}
\operatorname{ad}_{g *} A_{x} \operatorname{ad}_{g *}^{-1}=L_{g} R_{g^{-1}} R_{x} L_{x^{-1}} R_{g} L_{g^{-1}}=L_{g^{-1} x^{-1} g} R_{g x g^{-1}}=A_{g x g^{-1}} \tag{12}
\end{equation*}
$$

Overall, $L_{ \pm}(A)$ are ad (G)-invariant almost Dirac structures in $\left(T \oplus T^{*}\right)(G) . T_{x} G$ is spanned by the a^{L}, so L_{+}is spanned by $\left(a^{L}\right)^{+}+\left(a^{L}\right)^{-}=a^{L}+B\left(a^{L}\right)+a^{r}-B\left(a^{R}\right)$ and $L_{+}=\left\langle a^{L}+a^{R}+B\left(a^{L}-a^{R}\right)\right\rangle$. Recall that $\theta^{L}\left(a^{L}\right)=a$ so $\left\langle a^{L}+a^{R}+B\left(a^{L}-a^{R}\right)\right\rangle=\left\langle a^{L}+a^{R}+B\left(\theta^{L}-\theta^{R}, a\right)\right\rangle$. Similarly, $L_{-}=\left\langle a^{L}-a^{R}+B\left(\theta^{L}+\theta^{R}, a\right)\right\rangle$.

Remark. Since $a^{L}-a^{R}$ generates the adjoint action, $\left[a^{L}-a^{R}, b^{L}-b^{R}\right]=[a, b]^{L}-[a, b]^{R}$. But $\left[a^{L}+a^{R}, b^{L}+b^{R}\right]=[a, b]^{L}+[a, b]^{R}$ is not integrable. $L_{-}(A)$ is integrable, however, w.r.t. the Courant bracket twisted by $H=B\left(\theta^{L},\left[\theta^{L}, \theta^{L}\right]\right)$.

