
9 Lecture 9 (Notes: K. Venkatram) 

Last time, we talked about the geometry of a connected lie group G. Specifically, for any a in the 
corresponding Lie algebra g, one can define aL|g = Lg∗a and choose θL ∈ Ω1(G, g) s.t. θL(aL) = a. For 
instance, for GLn, with coordinates g = [gij ], one has θL = g−1dg, and similarly θR = dgg−1.This implies 
that dg ∧ θL + gdθL = 0 = ⇒ dθL + θL ∧ θL = 0 = ⇒ dθL + 12 [θ

L, θL] = 0, the latter of which is the 
Maurer-Cartan equation. 

Problem. 1. Extend this proof so that it works in the general case. 

2. Show j∗θR = −θL . 

3. Show dθR − 1 [θR, θR] = 0. 2 

4. Show θR(aL)|g = Ad ga∀a ∈ g, g ∈ G. 
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9.1 Bilinar forms on groups 

Let G be a connected real Lie group, B a symmetric nondegenerate bilinear form on g. This extends to a 
left-invariant metric on G, and B is invariant under right translation 
⇔ B([X,Y ], Z) + B(Y, [X,Z]) = 0∀X,Y, Z. If this is true, we obtain a bi-invariant (pseudo-Riemannian) 
metric on G. 

Remark. Geodesics through e are one-parameter subgroups B is bi-invariant. See Helgason for 
Riemannian geometry of Lie groups and homogeneous spaces. 

⇔ 

Example. Let B be the Killing form on a semisimple Lie group, i.e. B(a, b) = Trg(adaadb) for 
s|m, s m, spm a constant multiple of Tr(X,Y ). Now, we can form the Cartan 3-form◦ 

1 1 
H = B(θL , [θL, θL]) = B(θR , [θR, θR]) (7)

12 12 

This H is bi-invariant, and thus closed. When G is simple, compact, and simply connected, the Killing 
form gives λ[H] as a generator for H3(G, Z) = Z. (See Brylinski.) For instance, given g = s n, θ

L = g−1dg, 
one has H = Tr(θL ∧ θL ∧ θL) i.e. H = Tr(g−1dg)3 . 

|

9.1.1 Key calculation 

Let m, p1, p2 : G × G → G be the multiplication and projection maps respectively. Then 

m∗H = Tr((gh)−1d(gh))3 = Tr(h−1 g−1(gdh + dgh))3 

(8) 
= Tr(h−1gh)3 + Tr(g−1dg)3 + Tr((dhh−1)2 g−1dg) + Tr(dhh−1(g−1dg)2) 

Now, define θ = dhh−1 , Ω = g−1dg, so dθ = θ ∧ θ and dΩ = −Ω ∧ Ω. Then 

dTr(dhh−1 g−1dg) = dTr(θ ∧ Ω) = Tr(dθ ∧ Ω − θ ∧ dΩ) 
(9) 

= Tr(θ ∧ θ ∧ Ω + θ ∧ Ω ∧ Ω) 

So, m∗H − p1
∗H − p∗ 

2H = dτ , where τ = Tr(dhh−1g−1dg) = B(p∗ 
1θ

L, p2
∗θR) ∈ Ω2(G × G).


Now, recall that given a metric g : V → V ∗, we have a decomposition V ⊕ V ∗ = C+ ⊕ C− for C± = Γ±.

Moreover, any Dirac structure L ⊂ V ⊕ V ∗ can be written as the graph of A ∈ O(V, g) thought of as

A : C+ → C−. NOw, for X ∈ V , let X± = X ± gX ∈ C±. Then LA = {X+ ± (AX)− X ∈ V } are the± |
Dirac structures. Note that 

�X+ ± (AX)−, X+ ± (AX)−� = g(X,X) − g(AX,AX) = 0 (10) 

Let B be a bi-invariant metric on G. Then the map Ax = Lx−1∗Rx∗ : TxG → TxG, a
L �→ aR is orthogonal 

for B and ad(G)-invariant, since 

TxG 
Ax �� TxG 

adg∗ (11)adg∗ 

A gxg−1


Tgxg−1 G �� Tgxg−1 G


where adg∗ = Lg∗Rg−1∗. Thus, we find that 

adg∗Axad−1 = LgRg−1 RxLx−1 RgLg−1 = Lg−1x−1gRgxg−1 = Agxg−1 (12)g∗ 

Overall, L (A) are ad(G)-invariant almost Dirac structures in (T ⊕ T ∗)(G). TxG is spanned by the aL, so±
r LL+ is spanned by (aL)+ + (aL)− = aL + B(aL) + a − B(aR) and L+ = �aL + aR + B(a − aR)�. Recall


that θL(aL) = a so �aL + aR + B(aL − aR)� = �aL + aR + B(θL − θR, a)�. Similarly,

L− = �aL − aR + B(θL + θR, a)�.
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Remark. Since aL − aR generates the adjoint action, [aL − aR, bL − bR] = [a, b]L − [a, b]R . But 
[aL + aR, bL + bR] = [a, b]L + [a, b]R is not integrable. L (A) is integrable, however, w.r.t. the Courant 
bracket twisted by H = B(θL , [θL, θL]). 

−
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