9 Lecture 9 (Notes: K. Venkatram)

Last time, we talked about the geometry of a connected lie group G. Specifically, for any a in the corresponding Lie algebra \mathfrak{g} , one can define $a^L|_g = L_{g*}a$ and choose $\theta^L \in \Omega^1(G, \mathfrak{g})$ s.t. $\theta^L(a^L) = a$. For instance, for GL_n , with coordinates $g = [g_{ij}]$, one has $\theta^L = g^{-1}dg$, and similarly $\theta^R = dgg^{-1}$. This implies that $dg \wedge \theta^L + gd\theta^L = 0 \implies d\theta^L + \theta^L \wedge \theta^L = 0 \implies d\theta^L + \frac{1}{2}[\theta^L, \theta^L] = 0$, the latter of which is the Maurer-Cartan equation.

Problem. 1. Extend this proof so that it works in the general case.

- 2. Show $j^*\theta^R = -\theta^L$.
- 3. Show $d\theta^R \frac{1}{2}[\theta^R, \theta^R] = 0.$
- 4. Show $\theta^R(a^L)|_g = \text{Ad }_g a \forall a \in \mathfrak{g}, g \in G.$

Continued on next page ...

9.1 Bilinar forms on groups

Let G be a connected real Lie group, B a symmetric nondegenerate bilinear form on \mathfrak{g} . This extends to a left-invariant metric on G, and B is invariant under right translation

 $\Leftrightarrow B([X,Y],Z) + B(Y,[X,Z]) = 0 \forall X,Y,Z$. If this is true, we obtain a bi-invariant (pseudo-Riemannian) metric on G.

Remark. Geodesics through e are one-parameter subgroups $\Leftrightarrow B$ is bi-invariant. See Helgason for Riemannian geometry of Lie groups and homogeneous spaces.

Example. Let B be the Killing form on a semisimple Lie group, i.e. $B(a, b) = \text{Tr}_g(\text{ad}_a \text{ad}_b)$ for $\mathfrak{s}|_m, \mathfrak{s} \circ m, \mathfrak{s}p_m$ a constant multiple of Tr(X, Y). Now, we can form the Cartan 3-form

$$H = \frac{1}{12} B(\theta^{L}, [\theta^{L}, \theta^{L}]) = \frac{1}{12} B(\theta^{R}, [\theta^{R}, \theta^{R}])$$
(7)

This *H* is bi-invariant, and thus closed. When *G* is simple, compact, and simply connected, the Killing form gives $\lambda[H]$ as a generator for $H^3(G, \mathbb{Z}) = \mathbb{Z}$. (See Brylinski.) For instance, given $\mathfrak{g} = \mathfrak{s}|_n, \theta^L = g^{-1}dg$, one has $H = \operatorname{Tr}(\theta^L \wedge \theta^L \wedge \theta^L)$ i.e. $H = \operatorname{Tr}(g^{-1}dg)^3$.

9.1.1 Key calculation

Let $m, p_1, p_2: G \times G \to G$ be the multiplication and projection maps respectively. Then

$$m^{*}H = \operatorname{Tr}((gh)^{-1}d(gh))^{3} = \operatorname{Tr}(h^{-1}g^{-1}(gdh + dgh))^{3}$$

= $\operatorname{Tr}(h^{-1}gh)^{3} + \operatorname{Tr}(g^{-1}dg)^{3} + \operatorname{Tr}((dhh^{-1})^{2}g^{-1}dg) + \operatorname{Tr}(dhh^{-1}(g^{-1}dg)^{2})$ (8)

Now, define $\theta = dhh^{-1}$, $\Omega = g^{-1}dg$, so $d\theta = \theta \wedge \theta$ and $d\Omega = -\Omega \wedge \Omega$. Then

$$d\operatorname{Tr}(dhh^{-1}g^{-1}dg) = d\operatorname{Tr}(\theta \wedge \Omega) = \operatorname{Tr}(d\theta \wedge \Omega - \theta \wedge d\Omega)$$

= $\operatorname{Tr}(\theta \wedge \theta \wedge \Omega + \theta \wedge \Omega \wedge \Omega)$ (9)

So, $m^*H - p_1^*H - p_2^*H = d\tau$, where $\tau = \text{Tr}(dhh^{-1}g^{-1}dg) = B(p_1^*\theta^L, p_2^*\theta^R) \in \Omega^2(G \times G)$. Now, recall that given a metric $g: V \to V^*$, we have a decomposition $V \oplus V^* = C_+ \oplus C_-$ for $C_{\pm} = \Gamma_{\pm}$. Moreover, any Dirac structure $L \subset V \oplus V^*$ can be written as the graph of $A \in O(V, \mathfrak{g})$ thought of as $A: C_+ \to C_-$. NOw, for $X \in V$, let $X^{\pm} = X \pm gX \in C_{\pm}$. Then $L_{\pm}^A = \{X^+ \pm (AX)^- | X \in V\}$ are the Dirac structures. Note that

$$\langle X^+ \pm (AX)^-, X^+ \pm (AX)^- \rangle = g(X, X) - g(AX, AX) = 0$$
 (10)

Let B be a bi-invariant metric on G. Then the map $A_x = L_{x^{-1}*}R_{x*}: T_xG \to T_xG, a^L \mapsto a^R$ is orthogonal for B and ad(G)-invariant, since

where $\operatorname{ad}_{g*} = L_{g*}R_{g^{-1}*}$. Thus, we find that

$$\mathrm{ad}_{g*}A_x\mathrm{ad}_{g*}^{-1} = L_g R_{g^{-1}} R_x L_{x^{-1}} R_g L_{g^{-1}} = L_{g^{-1}x^{-1}g} R_{gxg^{-1}} = A_{gxg^{-1}}$$
(12)

Overall, $L_{\pm}(A)$ are $\operatorname{ad}(G)$ -invariant almost Dirac structures in $(T \oplus T^*)(G)$. T_xG is spanned by the a^L , so L_+ is spanned by $(a^L)^+ + (a^L)^- = a^L + B(a^L) + a^r - B(a^R)$ and $L_+ = \langle a^L + a^R + B(a^L - a^R) \rangle$. Recall that $\theta^L(a^L) = a$ so $\langle a^L + a^R + B(a^L - a^R) \rangle = \langle a^L + a^R + B(\theta^L - \theta^R, a) \rangle$. Similarly, $L_- = \langle a^L - a^R + B(\theta^L + \theta^R, a) \rangle$.

Remark. Since $a^L - a^R$ generates the adjoint action, $[a^L - a^R, b^L - b^R] = [a, b]^L - [a, b]^R$. But $[a^L + a^R, b^L + b^R] = [a, b]^L + [a, b]^R$ is not integrable. $L_-(A)$ is integrable, however, w.r.t. the Courant bracket twisted by $H = B(\theta^L, [\theta^L, \theta^L])$.