8 Lecture 8 (Notes: J. Bernstein)

8.1 Dirac Structures

So far we understand the exact Courant Algebroids

$$
0 \rightarrow T^{*} \rightarrow E \rightarrow T \rightarrow 0
$$

Which are classified up to isomorphism by $[H] \in H^{3}\left(M, \mathbb{R}^{3}\right)$ and upon a choice of splitting is isomorphic to $\left(T \oplus T^{*},<,>,[,]_{H}, \pi: E \rightarrow T\right)$. For $H \in \Omega_{c l}^{3}$. Always consider (M, E) or (M, H). Geometry in exact Courant Algebroids consists of studying special subbundles $L \subseteq E$.

Theorem 6. Suppose that $L \subseteq E$ a subbundle which is closed under [,] (involutive), i.e. $\left[C^{\infty}(L), C^{\infty}(L)\right] \subseteq C^{\infty}(L)$. then L must be isotropic or $L=\pi^{-1}(\Delta)$ for $\Delta \subseteq T$ integrable distribution Note, for $\Delta^{k} \subseteq T, \pi^{-1}(\delta)$ is of dimension $n+k$ and contains T^{*} (so is not isotropic).

Proof. Suppose L is involutive, but not isotropic, then there exists $v \in C^{\infty}(L)$ with $<v, v>_{m} \neq 0$. Now recall property $[f v, v]=f[v, v]-(\pi(v) f) v+2<v, v>d f \Rightarrow 2<v, v>d f \in C^{\infty}(L)$ for all f, as $[f v, v], f[v, v] \in C^{\infty}(L)$. This implies that $d f_{m} \in L_{m}$ for all m which tells us that $T_{m}^{*} \subseteq L_{m}$ but T^{*} is isotropic so $L_{m}=\pi^{-1}\left(\Delta_{m}\right)$ for $\Delta \neq 0$. Thus $\operatorname{rk} L>n$ evertywhere and so L not isotropic at all points $p \in M$ thus $T_{p}^{*} \subseteq L_{p}$ for all p and so $L=\pi^{-1}(\Delta)$ where Δ is an integrable distribution.
So interesting involutive subbundles are isotropic subbundles $L \subseteq E$. Recall that the axioms of a Courant Algebroid imply that $\left.[a, a]=\frac{1}{2} \pi^{*} d<a, a\right\rangle$. Thus on $L,\left.[,]_{\mathcal{C}}\right|_{C^{\infty}(L)}$ defines a Lie Algebroid when L is involutive and isotropic. So $L \subseteq E$ with $[L, L] \subseteq L$ and $<L, L>=0$ implies that $(L,[],, \pi)$ is a Lie Algebroid which implies $\left(C^{\infty}\left(\wedge^{*} L^{*}\right), d_{L}\right)$ gives rise the $H_{d_{L}}(M)$ the Lie Algebroid Cohomology.

Definition 14. When an isotropic, involutive $L \subset E$ is maximal it is called a Dirac Structure
Examples of Dirac structures in $0 \rightarrow T^{*} \rightarrow E \rightarrow T \rightarrow 0$

- $T^{*} \subset E$ as $\left[T^{*}, T^{*}\right] \subseteq\left[T^{*}, T^{*}\right]$
- If we split $\left(T \oplus T^{*},[,]_{H}\right)$ then $[X, Y]_{H} \in C^{\infty}(T)$ if and only if $H=0$ so $T \in T \oplus T^{*}$ is a Dirac structure if and only if $H=0$
- Any maximal isotropic transverse L (that is such that $L \cap T^{*}=\{0\}$ is of the form $L=\Gamma_{B}$. Since $e^{B}\left[e^{-B} \cdot, e^{-B} \cdot\right]_{H}=[\cdot, \cdot]_{H+d B}$ so $e^{B}[T, T]_{H-d B}=e^{B}\left[e^{-B} \Gamma_{B}, e^{-B} \Gamma_{B}\right]_{H-d B}=\left[\Gamma_{B}, \Gamma_{B}\right]_{H}$. Thus $\left.\left[\Gamma_{B}, \Gamma_{B}\right] \subset \Gamma_{B}\right]$ if and only if $[T, T]_{H-d B} \subseteq T$ and this occurs if and only if $H-d B=0$ so Γ_{B} is Dirac when and only when $[H]=0$. In particular when $[H] \neq 0$ there is no Dirac complement to T^{*}.
- When $\Delta \subset T$ is an integral distribution then $f: \Delta \oplus \operatorname{Ann} \Delta \hookrightarrow T \oplus T^{*}$ is involutive for $[,]_{H}$ when and only when $f^{*} H=0$.
- For $\left(T \oplus T^{*},[,]_{H}\right)$ and $\beta \in \wedge^{2} T$ we consider Γ_{β}. This is Dirac if and only if $[\beta, \beta]=-\beta^{*} H$ where we think of $\beta: T^{*} \rightarrow T$.

Problem. Verify the condition for Γ_{β} to be Dirac by first showing that $[\xi+\beta(\xi), \eta+\beta(\eta)]=\zeta+\beta(\zeta)$ if and only if $<[\xi+\beta(\xi), \eta+\beta(\eta)], \zeta+\beta(\zeta)>=0$. And then showing that $<[d f+\beta(d f), d g+\beta(d g)], d h+\beta(d h)>=\{f,\{g, h\}\}+\{g,\{h, f\}\}+\{h,\{f, g\}\}+H(\beta(d f), \beta(d g), \beta(d h))=$ $\left(\operatorname{Jac}\{\}+,\beta^{*} H\right)(d f, d g, d h)$.

Definition 15. if $[\beta, \beta]=-\beta^{*} H$ then β is called a twisted Poisson Structure.
Suppose that β is a twisted Poisson structure, then $e^{B} \Gamma_{\beta}$ is not necessarily $\Gamma_{\beta^{\prime}}$, in particular if β is invertible (as a map $T^{*} \rightarrow T$) and $\beta^{-1}=B$ then $e^{-B} \Gamma_{\beta}=T$. However if B is "small enough" then $e^{B} \Gamma_{\beta}=\Gamma_{\beta^{\prime}}$. To quantify this we note that $e^{B}: \xi+\beta(\xi) \mapsto \beta(\xi)+\xi+B \beta(\xi)$ which we want equal to $\eta+\beta^{\prime}(\eta)$. This happens if and only if $\eta=(1+B \beta) \xi$ and also $\beta(\xi)=\beta^{\prime}(\eta)=\beta^{\prime}(1+B \beta) \xi$. Thus $\beta^{\prime}=\beta(1+B \beta)^{-1}$ and so smallness just means that the map is invertible (i.e. what is written makes sense).

Definition 16. The transformation from $\beta \mapsto \beta(1+B \beta)^{-1}$ is called a gauge transform of β.
Problem. (S̆evera-Weinstein) Show that if β is Poisson and $d \beta=0$ then β^{\prime} is Poisson. Also show that $H_{\beta}^{\cdot}(M) \cong H_{\beta^{\prime}}^{\prime}(M)$, (i.e. one has a isomorphsm of Poisson cohomology. (Hint: $e^{B}: \Gamma_{\beta} \rightarrow \Gamma_{\beta^{\prime}}$ is an isomorphism of Lie Algebras).

8.2 Geometry of Lie Groups

Recall that for a Lie group G one has a natural action of $G \times G$ on G, given by $(g, h) \cdot x=g x h=L_{g} R_{h} x$ (here one has a left action and a right action). These actions commute in that $(g x) h=g(x h)$. Now for $\mathfrak{g}=T_{e} G$ the lie algebra of G one has two identifications of $\mathfrak{g} \rightarrow T_{g} G$ namely $\left.a \mapsto a^{L}\right|_{g}=\left(L_{g}\right)_{*} a$ and $\left.a \mapsto a^{R}\right|_{g}=\left(R_{g}\right)_{*} a$ where a^{L}, a^{R} are left and right invariant vector fields respectively. We have by definition $\left[a^{L}, b^{L}\right]_{L i e}=[a, b]^{L}$. Now if $j: G \rightarrow G$ is given by $x \mapsto x^{-1}$, then $j L_{g}=R_{g^{-1}} j$ so $j_{*}\left(L_{g}\right)_{*}=\left(R_{g^{-1}}\right)_{*} j_{*}$. In particular since $\left(j_{*}\right)_{e}=-I d$, one has $\left(j_{*} a^{L}\right)_{g^{-1}}=j_{*}\left(L_{g}\right)_{*} a=\left(R_{g^{-1}}\right)_{*} j_{*} a=-\left(R_{g^{-1}}\right)_{*} a=-\left.a^{R}\right|_{g^{-1}}$. Thus $j_{*} a^{L}=-a^{R}$. Thus $\left[a^{R}, b^{R}\right]=\left[j_{*} a^{L}, j_{*} b^{L}\right]=j_{*}\left[a^{L}, b^{L}\right]=j_{*}[a, b]^{L}=-[a, b]^{R}$. One also has $\left[a^{L}, b^{R}\right]=0$. To see this we note that the map $\mathfrak{g} \rightarrow C^{\infty}(T G)$ given by $\left.a \mapsto a^{L}\right|_{g}=\frac{d}{d t}(g \gamma(t))$ exponentiates to a right action $R_{\gamma(t)}$ similarly a^{R} exponentiates to a left action and so $\left[a^{L}, b^{R}\right]=0$.
We now define $A d_{g}: \mathfrak{g} \rightarrow \mathfrak{g}$ by $A d_{g}(X)=\left(R_{g^{-1}}\right)_{*}\left(L_{g}\right)_{*}$. Equivalently $\left.a^{R}\right|_{g}=\left.\left(A d_{g^{-1}} a\right)^{L}\right|_{g}$. We define $a d_{X}=d\left(A d_{g}\right)_{0}=[X, \cdot]$.

Lemma 1. If $\rho \in \Omega^{k}(G)$ is bi-invariant then $d \rho=0$
Proof. If ρ is left invariant then $\rho \in \wedge^{k} \mathfrak{g}^{*}$ and so

$$
d \rho\left(X_{0}, \ldots, X_{k}\right)=\sum_{i}(-1)^{i} X_{i} \rho\left(X_{0}, \ldots, \hat{X}_{i}, \ldots, X_{k}\right)+\sum_{i, j}(-1)^{i+j} \rho\left(\left[X_{i}, X_{j}\right], X_{0}, \ldots, X_{k}\right)
$$

, where we have chosen $X_{0}, \ldots X_{k}$ to be left invariant so the first sum is zero. On the other hand right invariance tells us that for all $X, \sum \rho\left(X_{1}, \ldots,\left[X, X_{i}\right], \ldots, X_{k}\right)=0$.

Problem. Show how the statement above implies that $d \rho=0$.
We define Cartan one-forms to be forms $\theta^{L}, \theta^{R} \in \Omega^{1}(G, \mathfrak{g})$ by $\theta_{g}^{L}(v)=\left(L_{g^{-1}}\right)_{*} v \in \mathfrak{g}$. and $\theta_{g}^{R}(v)=\left(R_{g^{-1}}\right)_{*} v \in \mathfrak{g}$. So $\theta_{x}^{L} \circ\left(L_{g^{-1}}\right)_{*}=\theta_{g x}^{L}$. Thus θ^{L} is left invariant as θ^{R} is right invariant. For $G=G l_{n}, \mathfrak{g}=M_{n}$ one has $\theta^{L}=g^{-1} d g$ and $\theta^{R}=d g g^{-1}$. Now if $g=\left[g_{i j}\right]$ that is $g_{i j}$ are coordinates one gets matrix of oneforms $\left[g_{i j}\right]^{-1}\left[d g_{i j}\right]$. Then $(\sigma g)^{-1} d(\sigma g)=g^{-1} \sigma^{-1} \sigma d g=g^{-1} d g$, and so it is left invariant (similarly one can check that the obvious definition is indeed right invariant). At $1 \in G L_{n}$ one has \mathfrak{g} consisting of $n \times n$ matrices $\left\{\left[a_{i j}\right]\right\}$ here we make think of $\left[a_{i} j\right]=\sum_{i, j} a_{i j} \frac{\partial}{\partial g_{i j}}$. so $g^{-1} d g\left(\sum_{i, j} a_{i j} \frac{\partial}{\partial g_{i j}}\right)=a_{i} j$, so $\left.g^{-1} d g\right|_{e}=I d: \mathfrak{g} \rightarrow \mathfrak{g}$. This is also true for θ^{L} and θ^{R}.

9 Lecture 9 (Notes: K. Venkatram)

Last time, we talked about the geometry of a connected lie group G. Specifically, for any a in the corresponding Lie algebra \mathfrak{g}, one can define $\left.a^{L}\right|_{g}=L_{g *} a$ and choose $\theta^{L} \in \Omega^{1}(G, \mathfrak{g})$ s.t. $\theta^{L}\left(a^{L}\right)=a$. For instance, for GL_{n}, with coordinates $g=\left[g_{i j}\right]$, one has $\theta^{L}=g^{-1} d g$, and similarly $\theta^{R}=d g g^{-1}$. This implies that $d g \wedge \theta^{L}+g d \theta^{L}=0 \Longrightarrow d \theta^{L}+\theta^{L} \wedge \theta^{L}=0 \Longrightarrow d \theta^{L}+\frac{1}{2}\left[\theta^{L}, \theta^{L}\right]=0$, the latter of which is the Maurer-Cartan equation.

Problem. 1. Extend this proof so that it works in the general case.
2. Show $j^{*} \theta^{R}=-\theta^{L}$.
3. Show $d \theta^{R}-\frac{1}{2}\left[\theta^{R}, \theta^{R}\right]=0$.
4. Show $\left.\theta^{R}\left(a^{L}\right)\right|_{g}=\operatorname{Ad}_{g} a \forall a \in \mathfrak{g}, g \in G$.

