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Theorem 6. Suppose that L ⊆ E a subbundle which is closed under [, ] (involutive), i.e. 
[C∞(L), C∞(L)] ⊆ C∞(L). then L must be isotropic or L = π−1(Δ) for Δ ⊆ T integrable distribution. 
Note, for Δk ⊆ T , π−1(δ) is of dimension n + k and contains T ∗ (so is not isotropic). 

Proof. Suppose L is involutive, but not isotropic, then there exists v ∈ C∞(L) with < v, v >m= 0. Now �
recall property [fv, v] = f [v, v] − (π(v)f)v + 2 < v, v > df ⇒ 2 < v, v > df ∈ C∞(L) for all f , as 
[fv, v], f [v, v] ∈ C∞(L). This implies that dfm for all m which tells us that T ∗ but T ∗ is∈ Lm m ⊆ Lm 

isotropic so Lm = π−1(Δm) for Δ = 0. Thus rk� L > n evertywhere and so L not isotropic at all points 
p ∈ M thus Tp 

∗ ⊆ Lp for all p and so L = π−1(Δ) where Δ is an integrable distribution. 

So interesting involutive subbundles are isotropic subbundles L ⊆ E. Recall that the axioms of a Courant 
Algebroid imply that [a, a] = 12 π

∗d < a, a >. Thus on L, [, ]C |C∞(L) defines a Lie Algebroid when L is 
involutive and isotropic. So L ⊆ E with [L,L] ⊆ L and < L,L >= 0 implies that (L, [, ], π) is a Lie 
Algebroid which implies (C∞(∧∗L∗), dL) gives rise the HdL (M) the Lie Algebroid Cohomology. 

Definition 14. When an isotropic, involutive L ⊂ E is maximal it is called a Dirac Structure 

Examples of Dirac structures in 0 → T ∗ → E → T → 0 

•	 T ∗ ⊂ E as [T ∗, T ∗] ⊆ [T ∗, T ∗] 

•	 If we split (T ⊕ T ∗, [, ]H ) then [X,Y ]H ∈ C∞(T ) if and only if H = 0 so T ∈ T ⊕ T ∗ is a Dirac

structure if and only if H = 0


•	 Any maximal isotropic transverse L (that is such that L ∩ T ∗ = {0} is of the form L = ΓB . Since 
eB [e−B , e−B ]H = [·, ]H+dB so eB [T, T ]H−dB = eB [e−BΓB , e

−B ΓB ]H−dB = [ΓB , ΓB ]H . Thus · · ·
[ΓB , ΓB ] ⊂ ΓB ] if and only if [T, T ]H−dB ⊆ T and this occurs if and only if H − dB = 0 so ΓB is 
Dirac when and only when [H] = 0. In particular when [H] = 0 there is no Dirac complement to � T ∗. 

•	 When Δ ⊂ T is an integral distribution then f : Δ ⊕ Ann Δ �→ T ⊕ T ∗ is involutive for [, ]H when 
and only when f∗H = 0. 

•	 For (T ⊕ T ∗, [, ]H ) and β ∈ ∧2T we consider Γβ . This is Dirac if and only if [β, β] = −β∗H where we 
think of β : T ∗ → T . 

Problem. Verify the condition for Γβ to be Dirac by first showing that [ξ + β(ξ), η + β(η)] = ζ + β(ζ) if

and only if < [ξ + β(ξ), η + β(η)], ζ + β(ζ) >= 0. And then showing that

< [df + β(df), dg + β(dg)], dh + β(dh) >= {f, {g, h}} + {g, {h, f}} + {h, {f, g}} + H(β(df), β(dg), β(dh)) =

(Jac{, } + β∗H)(df, dg, dh).


Definition 15. if [β, β] = −β∗H then β is called a twisted Poisson Structure. 

Suppose that β is a twisted Poisson structure, then eB Γβ is not necessarily Γβ� , in particular if β is 
invertible (as a map T ∗ → T ) and β−1 = B then e−B Γβ = T . However if B is “small enough” then 
eB Γβ = Γβ� . To quantify this we note that eB : ξ + β(ξ) �→ β(ξ) + ξ + Bβ(ξ) which we want equal to 
η + β�(η). This happens if and only if η = (1 + Bβ)ξ and also β(ξ) = β�(η) = β�(1 + Bβ)ξ. Thus 
β� = β(1 + Bβ)−1 and so smallness just means that the map is invertible (i.e. what is written makes sense). 

Definition 16. The transformation from β �→ β(1 + Bβ)−1 is called a gauge transform of β. 

Problem. (S̆evera-Weinstein) Show that if β is Poisson and dβ = 0 then β� is Poisson. Also show that 
H · = H · (M ), (i.e. one has a isomorphsm of Poisson cohomology. (Hint: eB : Γβ → is an β (M) ∼ β� Γβ� 

isomorphism of Lie Algebras). 
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8.2 Geometry of Lie Groups 

Recall that for a Lie group G one has a natural action of G × G on G, given by (g, h) x = gxh = Lg Rhx· 
(here one has a left action and a right action). These actions commute in that (gx)h = g(xh). Now for 
g = Te

R
G the lie algebra of G 

L 
one has two identifications of g → TgG namely a �→ aL|g = (Lg)∗a and 

a �→ a |g = (Rg)∗a where a , aR are left and right invariant vector fields respectively. We have by 
definition [aL, bL]Lie = [a, b]L . Now if j : G → G is given by x �→ x−1, then jLg = Rg−1 j so 
j (Lg ) = (Rg−1 ) In particular since (j )e = −Id, one has ∗ ∗ ∗j∗. ∗
(j∗aL)g−1 = j∗(Lg )∗a = (Rg−1 )∗j∗a = −(Rg−1 )∗a = −aR|g−1 . Thus j∗aL = −aR . Thus 
[aR, bR] = [j L, j∗b

L] = j [aL, bL] = j [a, b]L = −[a, b]R . One also has [aL, bR] = 0. To see this we note ∗a ∗ ∗
that the map g → C∞(TG) given by a �→ aL| = d (gγ(t)) exponentiates to a right action Rγ(t) similarly g dt 
aR exponentiates to a left action and so [aL, bR] = 0. 
We now define Adg : g → g by Adg (X) = (Rg−1 )∗(Lg)∗. Equivalently aR|g = (Adg−1 a)L|g . We define 
adX = d(Adg)0 = [X, ].·

Lemma 1. If ρ ∈ Ωk(G) is bi-invariant then dρ = 0 

Proof. If ρ is left invariant then ρ ∈ ∧kg∗ and so 

dρ(X0, . . . , Xk) = (−1)iXiρ(X0, . . . , X̂i, . . . , Xk) + (−1)i+j ρ([Xi, Xj ], X0, . . . , Xk) 
i i,j 

, where we have chosen X0, . . . Xk�to be left invariant so the first sum is zero . On the other hand right 
invariance tells us that for all X, ρ(X1, . . . , [X,Xi], . . . , Xk) = 0. 

Problem. Show how the statement above implies that dρ = 0. 

We define Cartan one-forms to be forms θL, θR ∈ Ω1(G, g) by θg
L(v) = (Lg−1 )∗v ∈ g. and 

θR(v) = (Rg−1 ) So θL = θL . Thus θL is left invariant as θR is right invariant. g ∗v ∈ g. x ◦ (Lg−1 )∗ gx

For G = Gln, g = Mn one has θL = g−1dg and θR = dgg−1 . Now if g = [gij ] that is gij are coordinates one 
gets matrix of oneforms [gij ]−1[dgij ]. Then (σg)−1d(σg) = g−1σ−1σdg = g−1dg, and so it is left invariant 
(similarly one can check that the obvious definition is indeed right invariant). At 1 ∈ GLn one has g 
consisting of n × n matrices {[aij ]} here we make think of [aij] = i,j aij ∂g

∂ 
ij 

. so 

g−1dg( i,j aij ∂g
∂ 

ij 
) = aij, so g−1dg|e = Id : g → g. This is also true for θL and θR . 

9 Lecture 9 (Notes: K. Venkatram) 

Last time, we talked about the geometry of a connected lie group G. Specifically, for any a in the 
corresponding Lie algebra g, one can define aL|g = Lg∗a and choose θL ∈ Ω1(G, g) s.t. θL(aL) = a. For 
instance, for GLn, with coordinates g = [gij ], one has θL = g−1dg, and similarly θR = dgg−1.This implies 
that dg ∧ θL + gdθL = 0 = dθL + θL ∧ θL = 0 = dθL + 1 [θL, θL] = 0, the latter of which is the 
Maurer-Cartan equation. 

⇒ ⇒ 2 

Problem. 1. Extend this proof so that it works in the general case. 

2. Show j∗θR = −θL . 

3. Show dθR − 1 [θR, θR] = 0. 2 

4. Show θR(aL)|g = Ad ga∀a ∈ g, g ∈ G. 
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