7 Lecture 7 (Notes: N. Rosenblyum)

7.1 Exact Courant Algebroids

Recall that a Courant algebroid is given by the diagram of bundles

where π is called the "anchor" along with a bracket [,] and a nondegenerate bilinear form \langle,$\rangle such that$

- $\pi[a, b]=[\pi a, \pi b]$
- The Jacobi identity is zero
- $[a, f b]=f[a, b]+((\pi a) f) b$
- $[a, b]=\frac{1}{2} \pi^{*} d\langle a, a\rangle$
- $\pi a\langle b, c\rangle=\langle[a, b], c\rangle+\langle b,[a, c]\rangle$

A Courant algebroid is exact if the sequence

$$
0 \longrightarrow T^{*} \xrightarrow{\pi} E \xrightarrow{\pi^{*}} T \longrightarrow 0
$$

is exact (note that $\pi \circ \pi^{*}$ is always 0).
Remarks: For an exact Courant algebroid, we have:

1. The inclusion $T^{*} \subset E$ is automatically isotropic because for $\xi, \eta \in T^{*}$,

$$
\left\langle\pi^{*} \xi, \pi^{*} \eta\right\rangle=\xi\left(\pi^{*} \pi \eta\right)=0
$$

since $\left\langle\pi^{*} \xi, a\right\rangle=\xi(\pi a)$.
2. The bracket $\left.[]\right|_{,T^{*}}=0$: for $s, t \in C^{\infty}(E), f \in C^{\infty}(M)$,

$$
\mathcal{D}=\pi^{*} d: C^{\infty}(M) \rightarrow C^{\infty}(E)
$$

Now,

$$
\langle[s, \mathcal{D} f], t\rangle=\pi s\langle\mathcal{D} f, t\rangle-\langle\mathcal{D} f,[s, t]\rangle=\pi s(\pi t(f))-\pi[s, t](f)=\pi t(\pi s(f))=\langle\mathcal{D}\langle\mathcal{D} f, s\rangle, f\rangle
$$

Thus, $[s, \mathcal{D} f]=\mathcal{D}\langle s, \mathcal{D} f\rangle$. We also have, $[\mathcal{D} f, s]+[s, \mathcal{D} f]=\mathcal{D}\langle\mathcal{D} f, s\rangle$ and therefore $[D f, s]=0$. We need to show that $\left[f d x^{i}, g d x^{j}\right]=0$. But have $\left[d x^{i}, d x^{j}\right]=0$ and

$$
[a, f b]=f[a, b]+((\pi a) f) b, \quad[g a, b]=g[a, b]-((\pi b) g) a+2\langle a, b\rangle d g
$$

7.2 Ševera's Classification of Exact Courant Algebroids

We can choose an isotropic splitting

$$
0 \longrightarrow T^{*} \underset{s^{*}}{\stackrel{\pi^{*}}{\longleftrightarrow}} E \underset{s}{\stackrel{\pi}{\longleftrightarrow}} T \longrightarrow 0
$$

i.e. $\langle s X, s Y\rangle=0$ for all $X, Y \in T$. We then have $E \cong T \oplus T^{*}$ and we can transport the Courant structure to $T \oplus T^{*}$: for $X, Y \in T$ and $\xi, \eta \in T^{*}$,

$$
\langle X+\xi, Y+\eta\rangle=\left\langle s X+\pi^{*} \xi, s Y+\pi^{*} \eta\right\rangle=\xi(\pi s Y)+\eta(\pi s X)=\xi(Y)+\eta(X)
$$

since $\langle s X, s Y\rangle=0$. Also,

$$
[X+\xi, Y+\eta]=\left[s X+\pi^{*} \xi, s Y+\pi^{*} \eta\right]=[s X, s Y]+\left[s X, \pi^{*} \eta\right]+\left[\pi^{*} \xi, s Y\right]
$$

We have that the second term is given by

$$
\pi\left[s X, \pi^{*} \eta\right]=\left[\pi s X, \pi \pi^{*} \eta\right]=0
$$

and therefore, $\left[s X, \pi^{*} \eta\right] \in \Omega^{1}$. Further,

$$
\left[s X, \pi^{*} \eta\right](Z)=\left\langle\left[s X, \pi^{*} \eta\right], s Z\right\rangle=X\left\langle\pi^{*} \eta, s Z\right\rangle-\left\langle\pi^{*} \eta,[s X, s Z]\right\rangle=X \eta(Z)-\eta([X, Z])=i_{Z} L_{X} \eta
$$

and so $\left[s X, \pi^{*} \eta\right]=L_{X} \eta$.
Now, the third term is given by

$$
\left\langle\left[\pi^{*} \xi, s Y\right], s Z\right\rangle=\left\langle-\left[s Y, \pi^{*} \xi\right]+\mathcal{D}\left\langle s Y, \pi^{*} \xi\right\rangle, s Z\right\rangle=-\left(L_{Y} \xi\right)(Z)+i_{Z} d i_{Y} \xi=\left(-i_{Y} d \xi\right)(Z)
$$

and so $\left[\pi^{*} \xi, s Y\right]=-i_{Y} d \xi$.
For the first term, we have no reason to believe that $[s X, s Y]=[X, Y]$ We do have that $\pi[s X, s Y]=[X, Y]_{\text {Lie }}$. Now, let $H(X, Y)=s^{*}[s X, s Y]$. We then have,

1. H is C^{∞}-linear and skew in X, Y :

$$
\begin{gathered}
H(X, f Y)=f s^{*}[s X, s Y]+s^{*}(X(f) s Y)=f s^{*}[s X, s Y], \text { and } \\
H(f X, Y)=s^{*}[f s X, s Y]=f H(X, Y)-s^{*}((Y f) s X)+2\langle s X, s Y\rangle d f=f H(X, Y) . \text { Furthermore, } \\
{[s X, s Y]+[s Y, s X]=\pi^{*} d\langle s X, s Y\rangle}
\end{gathered}
$$

2. $H(X, Y)(Z)$ is totally symmetic in X, Y, Z :

$$
H(X, Y)(Z)=\langle[s X, s Y], s Z\rangle_{E}=X\langle s Y, s Z\rangle-\langle s Y,[s X, s Z]\rangle
$$

So, we have $[s X, s Y]=[X, Y]-i_{Y} i_{X} H$ for $H \in \Omega^{3}(M)$.
Problem. Show that $[[a, b], c]=[a,[b, c]]-[b,[a, c]]+i_{\pi c} i_{\pi b} i_{\pi a} d H$ and so $J a c=0$ if and only if $d H=0$.
Thus, we have that the only parameter specifying the Courant bracket is a closed three form $H \in \Omega^{3}(M)$. We will see that when $[H] / 2 \pi \in H^{3}(M, \mathbb{Z}), E$ is associated to an S^{1}-gerbe.
Now, let's consider how H changes when we change the splitting. Suppose that we have two section $s_{1}, s_{2}: T \rightarrow E$. We then have that $\pi\left(s_{1}-s_{2}\right)=0$. So consider $B=s_{1}-s_{2}: T \rightarrow T^{*}$. In the s_{1} splitting, we have for $x \in T, s_{2}(x)=\left(x+\left(s_{2}-s_{1}\right) x\right)$. Since the s_{i} are isotropic splittings, we have that $\left(s_{2}-s_{1}\right)(x)(x)=0$. Thus we have, $B \in C^{\infty}\left(\Lambda^{2} T^{*}\right)$.
Now, in the s_{1} splitting we have,

$$
\begin{gathered}
{\left[X+i_{x} B, Y+i_{Y} B\right]_{H}=[X, Y]+L_{X} i_{Y} B-i_{Y} d i_{X} B+i_{Y} i_{X} H=[X, Y]+i_{[X, Y]} B-i_{Y} L_{X} B+i_{Y} d i_{X} B+i_{Y} i_{X} H=} \\
=[X, Y]+i_{[X, Y]} B+i_{Y} i_{X}(H+d B)
\end{gathered}
$$

In particular, in the s_{2} splitting H changes by $d B$. Thus, we have that $[H] \in H^{3}(M, \mathbb{R})$ classifies the exact Courant algebroid up to isomorphis.
The above bracket is also a derived bracket. Before, we had that

$$
[a, b]_{\mathcal{C}} \cdot \varphi=[[d, a], b] \varphi
$$

Now, replace d with $d_{H}=d+H \wedge$. We clearly have that $d_{H}^{2}=(d H) \wedge=0$ since $d H=0$. Note that d_{H} is not of degree one and is not a derivation but it is odd. The cohomology of d_{H} is called H-twisted deRham cohomology. In simple cases (e.g. when M is formal in the sense of rational homotopy theory,), we have

$$
H^{*}\left(H^{e v / o d}(M), e_{[H]}\right)=H_{d_{H}}^{e v / o d}(M)
$$

where $e_{H}=H \wedge$.
Now, $[a, b]_{H} \cdot \varphi=\left[\left[d_{H}, a\right], b\right] \varphi$. Indeed, for $B \in \Omega^{2}$, we have $\varphi \mapsto e^{B} \varphi$ and
$e^{-B}(d+H \wedge) e^{B}=e^{-B} d e^{B}+e^{-B} H e^{B}=d_{H+d B}$, and so $e^{B}\left[e^{-B} \cdot, e^{B} \cdot\right]_{H}=[,]_{H+d B}$ In particular, if $B \in \Omega_{c}^{2} l$, then e^{B} is a symmetry of the Courant bracket.
This phenomena is somewhat unusual because for the ordinary Lie bracket, the only symmetries are given by diffeomorphisms of the underlying manifold. More specifically, a symmetry of the Lie bracket on $C^{\infty}(T)$ is a diagram

such that ϕ is a diffeomorphism and $[\Phi, \Phi]=\Phi[\cdot, \cdot]$.

Claim 1. Sym $[,]_{\text {Lie }}=\left\{\left(\phi_{*}, \phi\right), \phi \in \operatorname{Diff}(M)\right\}$.
Proof. Given $(\Phi, \phi) \in \operatorname{Sym}[,]_{\text {Lie }}$, consider $G: \Phi \phi_{*}^{-1}$. Then G covers the identity map on M and we have $f G[X, Y]-((Y f) G X=G[f X, Y]=f[G X, G Y]-(G Y) f G X$ and so $Y f=(G Y)(f)$ for all Y, f and so $G=1$.

Let's now consider the question of what all the symmetries of the Courant bracket $[,]_{\mathcal{C}}$ are. Once again, we have a diagram

where $E \simeq T \oplus T^{*}$ such that

1. $\phi^{*}\langle\Phi \cdot, \Phi \cdot\rangle=\langle\cdot, \cdot\rangle$
2. $[\Phi \cdot, \Phi \cdot]=\Phi[\cdot, \cdot]$
3. $\pi \circ \Phi=\phi_{*} \circ \pi$.

Suppose that $\phi \in \operatorname{Diff}(M)$. Then on $T \oplus T^{*}, \phi_{*}$ is given by

$$
\phi_{*}=\left(\begin{array}{cc}
\phi_{*} & \\
& \left(\phi^{*}\right)^{-1}
\end{array}\right)
$$

and so we have $\phi_{*}(X+\xi)=\phi_{*} X+\left(\phi^{*}\right)^{-1} \xi$ and

$$
\phi_{*}^{-1}\left[\phi_{*} X+\left(\phi^{*}\right)^{-1} \xi, \phi_{*} Y+\left(\phi^{*}\right)^{-1} \eta\right]_{H}=[X+\xi, Y+\eta]_{\phi^{*} H}
$$

since $\phi_{*}^{-1}\left(i_{\phi_{*} Y} i_{\phi_{*} X} H\right)(Z)=i_{\phi_{*} Z} i_{\phi_{*} Y} i_{\phi_{*} X} H=\phi^{*} H(X, Y, Z)$. In particular, this does not give a symmetry unless $\phi^{*} H=H$.
Now, consider a B-field transform. Since $e^{B}\left[e^{-B} \cdot, e^{-B} \cdot\right]_{H}=[\cdot, \cdot]_{H+d B}$, this is not a symmetry unless $d B=0$. Now we can combine these to generate the symmetries:

$$
\left[\phi_{*} e^{B} \cdot, \phi_{*} e^{B} \cdot\right]=\phi_{*} e^{B}[\cdot, \cdot]_{\phi^{*} H+d B}
$$

and so $\phi_{*} e^{B} \in S y m E$ iff $H-\phi^{*} H=d B$. It turns out that these are all the symmetries.
Theorem 5. The above are all the symmetries of an exact Courant algebroid. In particular, we have a short exact sequence

$$
0 \rightarrow \Omega_{c l}^{2} \rightarrow \operatorname{Sym}(E) \rightarrow \operatorname{Diff}_{[H]} \rightarrow 0
$$

where $\operatorname{Diff}_{[H]}$ is the subgroup of diffeomorphisms of M preserving the cohomology class $[H]$.

