7 Lecture 7 (Notes: N. Rosenblyum)

7.1 Exact Courant Algebroids

Recall that a Courant algebroid is given by the diagram of bundles

where π is called the "anchor" along with a bracket [,] and a nondegenerate bilinear form \langle , \rangle such that

- $\pi[a,b] = [\pi a,\pi b]$
- The Jacobi identity is zero
- $[a, fb] = f[a, b] + ((\pi a)f)b$
- $[a,b] = \frac{1}{2}\pi^* d\langle a,a \rangle$
- $\pi a \langle b, c \rangle = \langle [a, b], c \rangle + \langle b, [a, c] \rangle$

A Courant algebroid is exact if the sequence

$$0 \longrightarrow T^* \xrightarrow{\pi} E \xrightarrow{\pi^*} T \longrightarrow 0$$

is exact (note that $\pi \circ \pi^*$ is always 0). Remarks: For an exact Courant algebroid, we have:

Continued on next page...

1. The inclusion $T^* \subset E$ is automatically isotropic because for $\xi, \eta \in T^*$,

$$\langle \pi^* \xi, \pi^* \eta \rangle = \xi(\pi^* \pi \eta) = 0$$

since $\langle \pi^* \xi, a \rangle = \xi(\pi a)$.

2. The bracket $[,]|_{T^*} = 0$: for $s, t \in C^{\infty}(E), f \in C^{\infty}(M)$,

$$\mathcal{D} = \pi^* d : C^\infty(M) \to C^\infty(E)$$

Now,

$$\langle [s, \mathcal{D}f], t \rangle = \pi s \langle \mathcal{D}f, t \rangle - \langle \mathcal{D}f, [s, t] \rangle = \pi s (\pi t(f)) - \pi [s, t](f) = \pi t (\pi s(f)) = \langle \mathcal{D} \langle \mathcal{D}f, s \rangle, f \rangle$$

Thus, $[s, \mathcal{D}f] = \mathcal{D}\langle s, \mathcal{D}f \rangle$. We also have, $[\mathcal{D}f, s] + [s, \mathcal{D}f] = \mathcal{D}\langle \mathcal{D}f, s \rangle$ and therefore [Df, s] = 0. We need to show that $[fdx^i, gdx^j] = 0$. But have $[dx^i, dx^j] = 0$ and

$$[a, fb] = f[a, b] + ((\pi a)f)b, \quad [ga, b] = g[a, b] - ((\pi b)g)a + 2\langle a, b\rangle dg = g[a, b] - ((\pi b)g)a + g[a, b] - ((\pi b)g)a + g[a, b] - ((\pi$$

7.2 Ševera's Classification of Exact Courant Algebroids

We can choose an isotropic splitting

$$0 \longrightarrow T^* \xrightarrow[s^*]{\pi^*} E \xrightarrow[s^*]{\pi^*} T \longrightarrow 0$$

i.e. $\langle sX, sY \rangle = 0$ for all $X, Y \in T$. We then have $E \cong T \oplus T^*$ and we can transport the Courant structure to $T \oplus T^*$: for $X, Y \in T$ and $\xi, \eta \in T^*$,

$$\langle X+\xi, Y+\eta \rangle = \langle sX+\pi^*\xi, sY+\pi^*\eta \rangle = \xi(\pi sY) + \eta(\pi sX) = \xi(Y) + \eta(X)$$

since $\langle sX, sY \rangle = 0$. Also,

$$[X + \xi, Y + \eta] = [sX + \pi^*\xi, sY + \pi^*\eta] = [sX, sY] + [sX, \pi^*\eta] + [\pi^*\xi, sY]$$

We have that the second term is given by

$$\pi[sX,\pi^*\eta] = [\pi sX,\pi\pi^*\eta] = 0$$

and therefore, $[sX, \pi^*\eta] \in \Omega^1$. Further,

$$[sX,\pi^*\eta](Z) = \langle [sX,\pi^*\eta], sZ \rangle = X \langle \pi^*\eta, sZ \rangle - \langle \pi^*\eta, [sX,sZ] \rangle = X\eta(Z) - \eta([X,Z]) = i_Z L_X \eta$$

and so $[sX, \pi^*\eta] = L_X\eta$. Now, the third term is given by

$$\langle [\pi^*\xi, sY], sZ \rangle = \langle -[sY, \pi^*\xi] + \mathcal{D}\langle sY, \pi^*\xi \rangle, sZ \rangle = -(L_Y\xi)(Z) + i_Z di_Y\xi = (-i_Y d\xi)(Z)$$

and so $[\pi^*\xi, sY] = -i_Y d\xi$. For the first term, we have no reason to believe that [sX, sY] = [X, Y] We do have that $\pi[sX, sY] = [X, Y]_{Lie}$. Now, let $H(X, Y) = s^*[sX, sY]$. We then have, 1. *H* is C^{∞} -linear and skew in *X*, *Y*:

$$H(X, fY) = fs^*[sX, sY] + s^*(X(f)sY) = fs^*[sX, sY], \text{ and}$$
$$H(fX, Y) = s^*[fsX, sY] = fH(X, Y) - s^*((Yf)sX) + 2\langle sX, sY \rangle df = fH(X, Y). \text{ Furthermore,}$$
$$[sX, sY] + [sY, sX] = \pi^* d\langle sX, sY \rangle.$$

2. H(X,Y)(Z) is totally symmetric in X, Y, Z:

$$H(X,Y)(Z) = \langle [sX,sY], sZ \rangle_E = X \langle sY, sZ \rangle - \langle sY, [sX,sZ] \rangle$$

So, we have $[sX, sY] = [X, Y] - i_Y i_X H$ for $H \in \Omega^3(M)$.

Problem. Show that $[[a, b], c] = [a, [b, c]] - [b, [a, c]] + i_{\pi c} i_{\pi b} i_{\pi a} dH$ and so Jac = 0 if and only if dH = 0.

Thus, we have that the only parameter specifying the Courant bracket is a closed three form $H \in \Omega^3(M)$. We will see that when $[H]/2\pi \in H^3(M,\mathbb{Z})$, E is associated to an S¹-gerbe.

Now, let's consider how H changes when we change the splitting. Suppose that we have two section $s_1, s_2: T \to E$. We then have that $\pi(s_1 - s_2) = 0$. So consider $B = s_1 - s_2: T \to T^*$. In the s_1 splitting, we have for $x \in T$, $s_2(x) = (x + (s_2 - s_1)x)$. Since the s_i are isotropic splittings, we have that $(s_2 - s_1)(x)(x) = 0$. Thus we have, $B \in C^{\infty}(\Lambda^2 T^*)$.

Now, in the s_1 splitting we have,

$$= [X, Y] + i_{[X,Y]}B + i_Y i_X (H + dB)$$

In particular, in the s_2 splitting H changes by dB. Thus, we have that $[H] \in H^3(M, \mathbb{R})$ classifies the exact Courant algebroid up to isomorphis.

The above bracket is also a derived bracket. Before, we had that

$$[a,b]_{\mathcal{C}} \cdot \varphi = [[d,a],b]\varphi.$$

Now, replace d with $d_H = d + H \wedge$. We clearly have that $d_H^2 = (dH) \wedge = 0$ since dH = 0. Note that d_H is not of degree one and is not a derivation but it is odd. The cohomology of d_H is called H-twisted deRham cohomology. In simple cases (e.g. when M is formal in the sense of rational homotopy theory,), we have

$$H^*(H^{ev/od}(M), e_{[H]}) = H^{ev/od}_{d_H}(M)$$

where $e_H = H \wedge$.

Now, $[a,b]_H \cdot \varphi = [[d_H,a],b]\varphi$. Indeed, for $B \in \Omega^2$, we have $\varphi \mapsto e^B \varphi$ and $e^{-B}(d+H\wedge)e^B = e^{-B}de^B + e^{-B}He^B = d_{H+dB}$, and so $e^B[e^{-B} \cdot, e^B \cdot]_H = [\ ,\]_{H+dB}$ In particular, if $B \in \Omega^2_c l$, then e^B is a symmetry of the Courant bracket.

This phenomena is somewhat unusual because for the ordinary Lie bracket, the only symmetries are given by diffeomorphisms of the underlying manifold. More specifically, a symmetry of the Lie bracket on $C^{\infty}(T)$ is a diagram

$$\begin{array}{c} T \xrightarrow{\Phi} T \\ \downarrow & \downarrow \\ M \xrightarrow{\phi} M \end{array}$$

such that ϕ is a diffeomorphism and $[\Phi, \Phi] = \Phi[\cdot, \cdot]$.

Claim 1. Sym[,]_{Lie} = { $(\phi_*, \phi), \phi \in Diff(M)$ }.

Proof. Given $(\Phi, \phi) \in Sym[,]_{Lie}$, consider $G : \Phi\phi_*^{-1}$. Then G covers the identity map on M and we have fG[X,Y] - ((Yf)GX = G[fX,Y] = f[GX,GY] - (GY)fGX and so Yf = (GY)(f) for all Y, f and so G = 1.

Let's now consider the question of what all the symmetries of the Courant bracket $[,]_{\mathcal{C}}$ are. Once again, we have a diagram

where $E \simeq T \oplus T^*$ such that

- 1. $\phi^* \langle \Phi \cdot, \Phi \cdot \rangle = \langle \cdot, \cdot \rangle$
- 2. $[\Phi \cdot, \Phi \cdot] = \Phi[\cdot, \cdot]$
- 3. $\pi \circ \Phi = \phi_* \circ \pi$.

Suppose that $\phi \in Diff(M)$. Then on $T \oplus T^*, \phi_*$ is given by

$$\phi_* = \left(\begin{array}{cc} \phi_* \\ & (\phi^*)^{-1} \end{array}\right)$$

and so we have $\phi_*(X+\xi) = \phi_*X + (\phi^*)^{-1}\xi$ and

$$\phi_*^{-1}[\phi_*X + (\phi^*)^{-1}\xi, \phi_*Y + (\phi^*)^{-1}\eta]_H = [X + \xi, Y + \eta]_{\phi^*H}$$

since $\phi_*^{-1}(i_{\phi_*Y}i_{\phi_*X}H)(Z) = i_{\phi_*Z}i_{\phi_*Y}i_{\phi_*X}H = \phi^*H(X,Y,Z)$. In particular, this does not give a symmetry unless $\phi^*H = H$.

Now, consider a *B*-field transform. Since $e^B[e^{-B}, e^{-B}]_H = [\cdot, \cdot]_{H+dB}$, this is not a symmetry unless dB = 0. Now we can combine these to generate the symmetries:

$$[\phi_* e^B \cdot, \phi_* e^B \cdot] = \phi_* e^B [\cdot, \cdot]_{\phi^* H + dB}$$

and so $\phi_* e^B \in SymE$ iff $H - \phi^* H = dB$. It turns out that these are all the symmetries.

Theorem 5. The above are all the symmetries of an exact Courant algebroid. In particular, we have a short exact sequence

$$0 \to \Omega_{cl}^2 \to Sym(E) \to Diff_{[H]} \to 0$$

where $Dif_{[H]}$ is the subgroup of diffeomorphisms of M preserving the cohomology class [H].