6 Lecture 6 (Notes: Y. Lekili)

Recall from last lecture : $S = \Lambda^{\bullet} V^*, (X + \xi) \cdot \rho = \iota_X \rho + \xi \wedge \rho.$ Mukai pairing $(\rho, \phi) = [\rho \wedge \alpha(\phi)]_n$ Spin₀-invariant.

$$\operatorname{Dir}(V) \longleftrightarrow$$
 Pure spinors
 $L_{\phi} \longleftrightarrow \phi = ce^{B}\theta_{1} \land \ldots \land \theta_{k}, k = \operatorname{type}$

Problem. 1. Prove that $L_{\phi} \cap L'_{\phi} = \{0\} \Leftrightarrow (\phi, \phi') \neq 0$

2. Let dimV = 4. Show that $0 \neq \rho = \rho_0 + \rho_2 + \rho_4$ is pure iff $2\rho_0\rho_4 = \rho_2 \wedge \rho_2$. Show in general dimension that Pur = Pure spinors $\subset S^{\pm}$ are defined by a quadratic cone. Indentify the space $\mathbb{P}(Pur) \subset \mathbb{P}(S^{\pm})$.

Continued on next page

6.1 Generalized Hodge star

 C_+ positive definite. $C_+: V \to V^*$, $C_+(X)(X) > 0$ for $X \neq 0$. $C_+ = \Gamma_{g+b}$, $g \in S^2V^*$ and $b \in \Lambda^2V^*$. Note that C_+ determines an operator

$$G: V \oplus V^* \to V \oplus V^*$$

 $\langle Gx, Gy \rangle = \langle x, y \rangle, G^2 = 1$. So $G^* = G$. G is called a generalized metric since $\langle Gx, y \rangle$ is positive definite.

Note that if $C_+ = \Gamma_g : \{v + g(v)\}$ and $C_- = \{v - g(v)\}$ then $G = \begin{pmatrix} 0 & g^{-1} \\ g & 0 \end{pmatrix}$. In general $C_+ = \Gamma_{g+b} = e^b \Gamma_g$ so

$$G = e^{b} \begin{pmatrix} 0 & g^{-1} \\ g & 0 \end{pmatrix} e^{-b} = \begin{pmatrix} 1 & 0 \\ b & 1 \end{pmatrix} \begin{pmatrix} 0 & g^{-1} \\ g & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ -b & 1 \end{pmatrix} = \begin{pmatrix} -g^{-1}b & g^{-1} \\ g - bg^{-1}b & bg^{-1} \end{pmatrix}$$

Problem. Note that restriction of G to T is $g - bg^{-1}b$. Verify that it is indeed positive definite.

Comment about the volume form of $g - bg^{-1}b = g^b$:

Note: $g - bg^{-1}b = (g - b)g^{-1}(g + b)$. So $\det(g - bg^{-1}b) = \det(g - b)\det(g^{-1})\det(g + b)$, and $\det(g + b) = \det(g + b)^* = \det(g - b)$. Hence $vol_{g^b} = \det(g - bg^{-1}b)^{1/2} = \frac{\det(g + b)}{\det(g)^{1/2}}$.

Problem. What is vol_{q^b}/vol_q ?

Aside: det V^* , choose orientation. det $V^* \otimes V^*$, natural orientation since square. det $g(v \otimes v) > 0$ so detg has square roots. After choice of orientation on V, there exists a unique positive square root vol_q .

A generalized metric is given by $G: V \oplus V^* \to V \oplus V^*$ such that $G^2 = 1, G^* = G, \langle G(x), x \rangle > 0$. $C_{\pm} = ker(G \mp 1).$

Consider $* = a_1 \dots a_n$ where (a_1, \dots, a_n) is an oriented basis for C_+ . $* \in CL(C_+) \subset CL(V \oplus V^*)$.

- * is the volume element of $CL(C_+)$
- * is the lift of -G to $Pin(V \oplus V^*) = \{v_1 \dots v_r : ||v_i|| = \pm 1\}$ (Spin if n is even)
- * acts on forms via * $\cdot \rho = a_1 \dots a_n \cdot \rho$.

Consider b = 0 and e_i, e^i orthonormal basis. Then $* = (e_1 + e^1) \dots (e_n + e^n)$. Consider $\alpha(*) = (e_n + e^n) \dots (e_1 + e^1)$. $\alpha(*) = e^n \wedge \dots \wedge e^1$, $\alpha(*) = e^n \wedge \dots \wedge e^2$, $\dots e^2$,

$$\alpha(\alpha(*)\rho) = \star \rho$$
, Hodge star.

So $\alpha(\alpha(*)\rho)$ is generalized Hodge star. Note that $*^2 = (-1)^{\frac{n(n-1)}{2}}$ and $(\rho, \phi) = (-1)^{\frac{n(n-1)}{2}}(\phi, \rho)$. So consider $(*\rho, \phi)$ is symmetric pairing of ρ, ϕ into det V^* . And note that if b = 0,

$$(*\rho,\phi) = (\rho,\alpha(*)\phi) = [\rho \land \alpha(\alpha(*)\phi)]_{top} = [\rho \land \star\phi]_{top} = g(\rho,\phi)vol_g$$

When $b \neq 0, G = e^b \begin{pmatrix} 0 & g^{-1} \\ g & 0 \end{pmatrix} e^{-b}$. So $* = e^b *_g e^{-b}$, and $(*\rho, \phi) = (e^b *_g e^{-b}\rho, \phi) = (*_g(e^{-b}\rho)e^{-b}\phi)$. So always nondegenerate for all b. Hence $(*\rho, \phi) = G(\rho, \phi)(*1, 1)$ with G(1, 1) = 1 where G is the natural symmetric pairing on forms.

Problem. Let e_1, \ldots, e_n be *g*-orthonormal basis of *V*.

- Show $(e_i + (g + b)(e_i))$ form orthonormal basis of C_+ .
- Show $(*1,1) = det(g+b)(e_1 \wedge \ldots \wedge e_n) = \frac{\det(g+b)}{\det(g)^{1/2}} = vol_{g^b}$
- As a result, show $\frac{vol_{g^b}}{vol_g} = ||e^{-b}||_g^2$

6.2 Spinors for $TM \oplus T^*M$ and the Courant algebroid

On a manifold $M, T = TM, T^* = T^*M$. $T \oplus T^*$ is a bundle with \langle , \rangle structure O(n, n). $S = \Lambda^{\bullet}T^*$.

Diff forms
$$\longleftrightarrow$$
 Spinors for $T \oplus T^*$.

New element: $d: \Omega^k \to \Omega^{k+1}$. Recall [X, Y] is defined by $\iota_{[X,Y]} = [L_X, \iota_Y] = [[d, \iota_X], \iota_Y]$. We now use same strategy to define a bracket on $T \oplus T^*$.

$$(X+\xi)\cdot\rho=(\iota_X+\xi\wedge)\rho$$

So for $e_1, e_2 \in C^{\infty}(T \oplus T^*)$, define

$$[[d, e_1 \cdot], e_2 \cdot]\rho = [e_1, e_2]_{\mathcal{C}} \cdot \rho$$

the Courant bracket on $C^{\infty}(T \oplus T^*)$. Note $[d, \iota_X + (\xi \wedge)] = L_X + (d\xi \wedge)$ and

$$[L_X + (d\xi \wedge), \iota_Y + (\eta \wedge)] = \iota_{[X,Y]} + ((L_X \eta) \wedge) - ((\iota_Y d)\xi \wedge).$$

Hence

$$[[d, e_1 \cdot], e_2 \cdot]\rho = \iota_{[X,Y]}\rho + (L_X\eta - \iota_Y d\xi) \wedge \rho$$

defines a bracket, Courant bracket :

$$[X + \xi, Y + \eta] = [X, Y] + L_X \eta - \iota_Y d\xi.$$

Note bracket is not skew-symmetric: $[X + \xi, X + \xi] = L_X \xi - \iota_X d\xi = d\iota_X \xi = d\langle X + \xi, X + \xi \rangle$. It is skew "up to exact terms" or "up to homotopy". However, it does satisfy Jacobi identity:

$$[[a, b].c] = [a, [b, c]] - [b, [a, c]].$$

 $\begin{aligned} \textit{Proof:} \ [d,\cdot] &= D \text{ an inner graded derivation on End} \Omega. \ D^2 = 0. \ [a,b]_{\mathcal{C}} \cdot \phi = [[d,a],b] \cdot \phi = [Da,b] \text{ Then} \\ [[a,b]_{\mathcal{C}},c]_{\mathcal{C}} \cdot \phi &= [D[Da,b],c]\phi = [[Da,Db],c]\phi = [Da,[Db,c]] - [Db,[Da,c]] = [a,[b,c]_{\mathcal{C}}]_{\mathcal{C}} - [b,[a,c]_{\mathcal{C}}]_{\mathcal{C}}. \end{aligned}$

It is also obviously compatible with Lie bracket.

$$\begin{split} T \oplus T^* & \stackrel{\pi}{\longrightarrow} T \\ [\ , \]_{\mathcal{C}} & \longrightarrow [\ , \] \end{split}$$

that is, $[\pi a, \pi b] = \pi [a, b]_{\mathcal{C}}$.

Two main key properties :

• $[a, fb] = f[a, b] + ((\pi a)(f))b.$

Let
$$a = X + \xi, b = Y + \eta,$$

 $[X + \xi, f(Y + \eta)] = [X, fY] + L_X(f\eta) - f\iota_Y d\xi = f[a, b] + (Xf)Y + (Xf)\eta = f[X + \xi, Y + \eta] + (Xf)(Y + \eta).$

• How does it interact with \langle, \rangle ? $\pi a \langle b, b \rangle = 2 \langle [a, b], b \rangle$

$$\langle [a,b],b\rangle = \iota_{[X,Y]}\eta + \iota_Y(L_X\eta - \iota_Yd\xi) = L_X\iota_Y\eta = \frac{1}{2}L_X\langle b,b\rangle = \pi a\langle b,b\rangle$$

Usually written : $\pi a \langle b, c \rangle = \langle [a, b], c \rangle + \langle b, [a, c] \rangle$.

This defines the notion of *Courant Algebroid*:

 $(E, \langle, \rangle, [,], \pi)$ where E is a real vector bundle, $\pi : E \to T$ is called anchor, \langle, \rangle is nondegenerate symmetric bilinear form, $[,]: C^{\infty}(E) \times C^{\infty}(E) \to C^{\infty}(E)$ such that :

- $[[e_1, e_2], e_3] = [e_1, [e_2, e_3] [e_2, [e_1, e_3]]$
- $[\pi e_1, \pi e_2] = \pi [e_1, e_2]$
- $[e_1, fe_2] = f[e_1, e_2] + (\pi e_1)f)e_2$
- $\pi e_1 \langle e_2, e_3 \rangle = \langle [e_1, e_2], e_3 \rangle + \langle e_2, [e_1, e_3] \rangle$
- $[e_1, e_1] = \pi^* d \langle e_1, e_1 \rangle$

E is exact when

$$0 \to T^* \xrightarrow{\pi^*} E \xrightarrow{\pi} T \to 0$$

So $T \oplus T^*$ is exact Courant algebroid.

This motivates Lie Algebroid: $A \xrightarrow{\pi} T$, $[,]: C^{\infty}(A) \times C^{\infty}(A) \to C^{\infty}(A)$ Lie alg. such that

- $\pi[a,b] = [\pi a,\pi b]$
- $[a, fb] = f[a, b] + ((\pi a)f)b$