6 Lecture 6 (Notes: Y. Lekili)

Recall from last lecture :
$S=\Lambda^{\bullet} V^{*},(X+\xi) \cdot \rho=\iota_{X} \rho+\xi \wedge \rho$. Mukai pairing $(\rho, \phi)=[\rho \wedge \alpha(\phi)]_{n}$ Spin $_{0}$-invariant.

$$
\begin{aligned}
\operatorname{Dir}(V) & \longleftrightarrow \text { Pure spinors } \\
L_{\phi} & \longleftrightarrow \phi=c e^{B} \theta_{1} \wedge \ldots \wedge \theta_{k}, k=\text { type }
\end{aligned}
$$

Problem. 1. Prove that $L_{\phi} \cap L_{\phi}^{\prime}=\{0\} \Leftrightarrow\left(\phi, \phi^{\prime}\right) \neq 0$
2. Let $\operatorname{dim} V=4$. Show that $0 \neq \rho=\rho_{0}+\rho_{2}+\rho_{4}$ is pure iff $2 \rho_{0} \rho_{4}=\rho_{2} \wedge \rho_{2}$. Show in general dimension that Pur $=$ Pure spinors $\subset S^{ \pm}$are defined by a quadratic cone. Indentify the space $\mathbb{P}($ Pur $) \subset \mathbb{P}\left(S^{ \pm}\right.$. $)$

6.1 Generalized Hodge star

C_{+}positive definite. $C_{+}: V \rightarrow V^{*}, C_{+}(X)(X)>0$ for $X \neq 0 . C_{+}=\Gamma_{g+b}, g \in S^{2} V^{*}$ and $b \in \Lambda^{2} V^{*}$. Note that C_{+}determines an operator

$$
G: V \oplus V^{*} \rightarrow V \oplus V^{*}
$$

$\langle G x, G y\rangle=\langle x, y\rangle, G^{2}=1$. So $G^{*}=G . G$ is called a generalized metric since $\langle G x, y\rangle$ is positive definite. Note that if $C_{+}=\Gamma_{g}:\{v+g(v)\}$ and $C_{-}=\{v-g(v)\}$ then $G=\left(\begin{array}{cc}0 & g^{-1} \\ g & 0\end{array}\right)$. In general $C_{+}=\Gamma_{g+b}=e^{b} \Gamma_{g}$ so

$$
G=e^{b}\left(\begin{array}{cc}
0 & g^{-1} \\
g & 0
\end{array}\right) e^{-b}=\left(\begin{array}{cc}
1 & 0 \\
b & 1
\end{array}\right)\left(\begin{array}{cc}
0 & g^{-1} \\
g & 0
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
-b & 1
\end{array}\right)=\left(\begin{array}{cc}
-g^{-1} b & g^{-1} \\
g-b g^{-1} b & b g^{-1}
\end{array}\right)
$$

Problem. Note that restriction of G to T is $g-b g^{-1} b$. Verify that it is indeed positive definite.
Comment about the volume form of $g-b g^{-1} b=g^{b}$:
Note: $g-b g^{-1} b=(g-b) g^{-1}(g+b)$. So $\operatorname{det}\left(g-b g^{-1} b\right)=\operatorname{det}(g-b) \operatorname{det}\left(g^{-1}\right) \operatorname{det}(g+b)$, and $\operatorname{det}(g+b)=\operatorname{det}(g+b)^{*}=\operatorname{det}(g-b)$. Hence $\operatorname{vol}_{g^{b}}=\operatorname{det}\left(g-b g^{-1} b\right)^{1 / 2}=\frac{\operatorname{det}(g+b)}{\operatorname{det}(g)^{1 / 2}}$.
Problem. What is $v o l_{g^{b}} /$ vol $_{g}$?
Aside: $\operatorname{det} V^{*}$, choose orientation. $\operatorname{det} V^{*} \otimes V^{*}$, natural orientation since square. $\operatorname{det} g(v \otimes v)>0$ so $\operatorname{det} g$ has square roots. After choice of orientation on V, there exists a unique positive square root vol ${ }_{g}$.

A generalized metric is given by $G: V \oplus V^{*} \rightarrow V \oplus V^{*}$ such that $G^{2}=1, G^{*}=G,\langle G(x), x\rangle>0$. $C_{ \pm}=k e r(G \mp 1)$.
Consider $*=a_{1} \ldots a_{n}$ where $\left(a_{1}, \ldots, a_{n}\right)$ is an oriented basis for $C_{+} . * \in \mathrm{CL}\left(C_{+}\right) \subset \mathrm{CL}\left(V \oplus V^{*}\right)$.

- $*$ is the volume element of $\mathrm{CL}\left(C_{+}\right)$
- * is the lift of $-G$ to $\operatorname{Pin}\left(V \oplus V^{*}\right)=\left\{v_{1} \ldots v_{r}:\left\|v_{i}\right\|= \pm 1\right\}$ (Spin if n is even)
- $*$ acts on forms via $* \cdot \rho=a_{1} \ldots a_{n} \cdot \rho$.

Consider $b=0$ and e_{i}, e^{i} orthonormal basis. Then $*=\left(e_{1}+e^{1}\right) \ldots\left(e_{n}+e^{n}\right)$. Consider $\alpha(*)=\left(e_{n}+e^{n}\right) \ldots\left(e_{1}+e^{1}\right) . \alpha(*) 1=e^{n} \wedge \ldots \wedge e^{1}, \alpha(*) e^{1}=e^{n} \wedge \ldots \wedge e^{2}, \ldots$ etc. So,

$$
\alpha(\alpha(*) \rho)=\star \rho, \text { Hodge star. }
$$

So $\alpha(\alpha(*) \rho)$ is generalized Hodge star. Note that $*^{2}=(-1)^{\frac{n(n-1)}{2}}$ and $(\rho, \phi)=(-1)^{\frac{n(n-1)}{2}}(\phi, \rho)$. So consider $(* \rho, \phi)$ is symmetric pairing of ρ, ϕ into $\operatorname{det} V^{*}$. And note that if $b=0$,

$$
(* \rho, \phi)=(\rho, \alpha(*) \phi)=[\rho \wedge \alpha(\alpha(*) \phi)]_{t o p}=[\rho \wedge \star \phi]_{t o p}=g(\rho, \phi) \operatorname{vol}_{g}
$$

When $b \neq 0, G=e^{b}\left(\begin{array}{cc}0 & g^{-1} \\ g & 0\end{array}\right) e^{-b}$. So $*=e^{b} *_{g} e^{-b}$, and $(* \rho, \phi)=\left(e^{b} *_{g} e^{-b} \rho, \phi\right)=\left(*_{g}\left(e^{-b} \rho\right) e^{-b} \phi\right)$. So always nondegenerate for all b. Hence $(* \rho, \phi)=G(\rho, \phi)(* 1,1)$ with $G(1,1)=1$ where G is the natural symmetric pairing on forms.
Problem. Let e_{1}, \ldots, e_{n} be g-orthonormal basis of V.

- Show $\left(e_{i}+(g+b)\left(e_{i}\right)\right)$ form orthonormal basis of C_{+}.
- Show $(* 1,1)=\operatorname{det}(g+b)\left(e_{1} \wedge \ldots \wedge e_{n}\right)=\frac{\operatorname{det}(g+b)}{\operatorname{det}(g)^{1 / 2}}=\operatorname{vol}_{g^{b}}$
- As a result, show $\frac{\text { vol }_{g} b}{v o l_{g}}=\left\|e^{-b}\right\|_{g}^{2}$

6.2 Spinors for $T M \oplus T^{*} M$ and the Courant algebroid

On a manifold $M, T=T M, T^{*}=T^{*} M . T \oplus T^{*}$ is a bundle with \langle,$\rangle structure O(n, n) . S=\Lambda^{\bullet} T^{*}$.

$$
\text { Diff forms } \longleftrightarrow \text { Spinors for } T \oplus T^{*}
$$

New element: $d: \Omega^{k} \rightarrow \Omega^{k+1}$. Recall $[X, Y]$ is defined by $\iota_{[X, Y]}=\left[L_{X}, \iota_{Y}\right]=\left[\left[d, \iota_{X}\right], \iota_{Y}\right]$. We now use same strategy to define a bracket on $T \oplus T^{*}$.

$$
(X+\xi) \cdot \rho=\left(\iota_{X}+\xi \wedge\right) \rho
$$

So for $e_{1}, e_{2} \in C^{\infty}\left(T \oplus T^{*}\right)$, define

$$
\left[\left[d, e_{1} \cdot\right], e_{2} \cdot\right] \rho=\left[e_{1}, e_{2}\right]_{\mathcal{C}} \cdot \rho
$$

the Courant bracket on $C^{\infty}\left(T \oplus T^{*}\right)$. Note $\left[d, \iota_{X}+(\xi \wedge)\right]=L_{X}+(d \xi \wedge)$ and

$$
\left[L_{X}+(d \xi \wedge), \iota_{Y}+(\eta \wedge)\right]=\iota_{[X, Y]}+\left(\left(L_{X} \eta\right) \wedge\right)-\left(\left(\iota_{Y} d\right) \xi \wedge\right)
$$

Hence

$$
\left[\left[d, e_{1} \cdot\right], e_{2} \cdot\right] \rho=\iota_{[X, Y]} \rho+\left(L_{X} \eta-\iota_{Y} d \xi\right) \wedge \rho
$$

defines a bracket, Courant bracket:

$$
[X+\xi, Y+\eta]=[X, Y]+L_{X} \eta-\iota_{Y} d \xi
$$

Note bracket is not skew-symmetric: $[X+\xi, X+\xi]=L_{X} \xi-\iota_{X} d \xi=d \iota_{X} \xi=d\langle X+\xi, X+\xi\rangle$. It is skew "up to exact terms" or "up to homotopy". However, it does satisfy Jacobi identity:

$$
[[a, b] . c]=[a,[b, c]]-[b,[a, c]]
$$

Proof: $[d, \cdot]=D$ an inner graded derivation on $\operatorname{End} \Omega . D^{2}=0 .[a, b]_{\mathcal{C}} \cdot \phi=[[d, a], b] \cdot \phi=[D a, b]$ Then $\left[[a, b]_{\mathcal{C}}, c\right]_{\mathcal{C}} \cdot \phi=[D[D a, b], c] \phi=[[D a, D b], c] \phi=[D a,[D b, c]]-[D b,[D a, c]]=\left[a,[b, c]_{\mathcal{C}}\right]_{\mathcal{C}}-\left[b,[a, c]_{\mathcal{C}}\right]_{\mathcal{C}}$.

It is also obviously compatible with Lie bracket.

$$
\begin{aligned}
T \oplus T^{*} & \xrightarrow{\pi} T \\
{[,]_{\mathcal{C}} } & \longrightarrow[,]
\end{aligned}
$$

that is, $[\pi a, \pi b]=\pi[a, b]_{\mathcal{C}}$.
Two main key properties :

- $[a, f b]=f[a, b]+((\pi a)(f)) b$.

Let $a=X+\xi, b=Y+\eta$,
$[X+\xi, f(Y+\eta)]=[X, f Y]+L_{X}(f \eta)-f \iota_{Y} d \xi=f[a, b]+(X f) Y+(X f) \eta=f[X+\xi, Y+\eta]+(X f)(Y+\eta)$.

- How does it interact with \langle,$\rangle ? \pi a\langle b, b\rangle=2\langle[a, b], b\rangle$

$$
\langle[a, b], b\rangle=\iota_{[X, Y]} \eta+\iota_{Y}\left(L_{X} \eta-\iota_{Y} d \xi\right)=L_{X} \iota_{Y} \eta=\frac{1}{2} L_{X}\langle b, b\rangle=\pi a\langle b, b\rangle
$$

Usually written : $\pi a\langle b, c\rangle=\langle[a, b], c\rangle+\langle b,[a, c]\rangle$.
This defines the notion of Courant Algebroid:
$(E,\langle\rangle,,[],, \pi)$ where E is a real vector bundle, $\pi: E \rightarrow T$ is called anchor, \langle,$\rangle is nondegenerate symmetric$ bilinear form, [,] : $C^{\infty}(E) \times C^{\infty}(E) \rightarrow C^{\infty}(E)$ such that :

- $\left[\left[e_{1}, e_{2}\right], e_{3}\right]=\left[e_{1},\left[e_{2}, e_{3}\right]-\left[e_{2},\left[e_{1}, e_{3}\right]\right]\right.$
- $\left[\pi e_{1}, \pi e_{2}\right]=\pi\left[e_{1}, e_{2}\right]$
- $\left.\left[e_{1}, f e_{2}\right]=f\left[e_{1}, e_{2}\right]+\left(\pi e_{1}\right) f\right) e_{2}$
- $\pi e_{1}\left\langle e_{2}, e_{3}\right\rangle=\left\langle\left[e_{1}, e_{2}\right], e_{3}\right\rangle+\left\langle e_{2},\left[e_{1}, e_{3}\right]\right\rangle$
- $\left[e_{1}, e_{1}\right]=\pi^{*} d\left\langle e_{1}, e_{1}\right\rangle$
E is exact when

$$
0 \rightarrow T^{*} \xrightarrow{\pi^{*}} E \xrightarrow{\pi} T \rightarrow 0
$$

So $T \oplus T^{*}$ is exact Courant algebroid.
This motivates Lie Algebroid: $A \xrightarrow{\pi} T,[]:, C^{\infty}(A) \times C^{\infty}(A) \rightarrow C^{\infty}(A)$ Lie alg. such that

- $\pi[a, b]=[\pi a, \pi b]$
- $[a, f b]=f[a, b]+((\pi a) f) b$

