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5 Lecture 5 (Notes: C. Kottke) 

5.1 Spinors 

We have a natural action of V ⊕ V ∗ on ·
V ∗. Indeed, if X + ξ ∈ V ⊕ V ∗ and ρ ∈ ·

V ∗, let 

(X + ξ) ρ = iX ρ + ξ ∧ ρ.· 
Then 

(X + ξ)2 ρ = iX (iX ρ + ξ ∧ ρ) + ξ ∧ (iX ρ + ξ ∧ ρ)· 
= (iX ξ)ρ − ξ ∧ iX ρ + ξ ∧ iX ρ 

= �X + ξ,X + ξ�ρ 

where �, � is the natural symmetric bilinear form on V ⊕ V ∗: 
1 �X + ξ, Y + η� = 
2
(ξ(Y ) + η(X)). 

Thus we have an action of v ∈ V ⊕ V ∗ with v2ρ = �v, v�ρ. This is the defining relation for the Clifford 
Algebra CL(V ⊕ V ∗). 

For a general vector space E, CL(E, �, �) is defined by 

CL(E, �, �) = E/ �v ⊗ v − �v, v�1� 

That is, CL(E, �, �) is the quotient of the graded tensor product of E by the free abelian group generated by 
all elements of the form v ⊗ v − �v, v�1 for v ∈ E. Note in particular that if �, � ≡ 0 then CL(E, �, �) = ·

E. 
=We therefore have representation CL(V ⊕ V ∗) −→ End( = ) where n dimV .
∼ � ·

V ∗) ∼ End(R2n 
= This is 

called the “spin” representation for CL(V ⊕ V ∗). 
Choose an orthonormal basis for V ⊕ V ∗, i.e. {e1 ± e1, . . . , en ± en}. The clifford algebra has a natural 

volume element in terms of this basis given by 

2ω ≡ (−1) 
n(n−1) 

(e1 − e 1) (en − e n)(e1 + e 1) (en + e n).· · · · · · 

Problem. Show ω1 = 1, ωei = −eiω, ωe
i = −eiω, and ω 1 = 1, considering 1 as the element in 

�0
V ∗ acted · 

on by the clifford algebra. 

The eigenspace of ω is naturally split, and we have 

S+ ≡ Ker(ω − 1) = ev
V ∗ 

S− ≡ Ker(ω + 1) = 
�od

V ∗ 

The ei are known as “creation operators” and the ei as “annihilation operators”. We define the “spinors” S 
by � 

S = ·
V ∗ = S+ ⊕ S− 

Here is another view. V is naturally embedded in V ⊕ V ∗, so we have 

CL(V ) = ·
V ⊂ CL(V ⊕ V ∗) 

since �V, V � = 0. Note in particular that det V ⊂ CL(V ⊕ V ∗), where detV is generated by e1 · · · en in 
terms of our basis elements. detV is a minimal ideal in CL(V ⊕ V ∗), so CL(V ⊕ V ∗) detV ⊂ CL(V ⊕ V ∗).· 
Elements of CL(V ⊕ V ∗) det V are generated by elements which look like · 

(1, e i , e i ej , . . .) en� �� � �e1 · · · �� � 
no ei ≡ f ∈ det V 

For x ∈ CL(V ⊕ V ∗) and ρ ∈ S, the action x ρ satisfies xρf = (x ρ)f .· · 
Problem. Show that this action coincides with the Cartan action. 
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5.2 The Spin Group 

The spin group Spin(V ⊕ V ∗) ⊂ CL(V ⊕ V ∗) is defined by 

Spin(V ⊕ V ∗) = {v1 · · · vr : vi ∈ V ⊕ V ∗, �vi, vi� = ±, r even.} 

Spin(V ⊕ V ∗) is a double cover of the special orthogonal group SO(V ⊕ V ∗); there is a map 

2:1 
ρ : Spin(V ⊕ V ∗) −→ SO(V ⊕ V ∗) 

where the action ρ(x) v = xvx−1 in CL(V ⊕ V ∗).· 
The adjoint action in the Lie algebra so(V ⊕ V ∗) is given by 

dρx : v �−→ [x, v] 

where [, ] is the commutator in CL(V ⊕ V ∗), so 

so(V ⊕ V ∗) = span{[x, y] : x, y ∈ V ⊕ V ∗} ∼
�2(V ⊕ V ∗).= 

Recall that 
�2(V ⊕ V ∗) = 

�2
V ∗ ⊕ 

�2
V ⊕ End(V ), so a generic element in 

�2(V ⊕ V ∗) looks like 

B + β + A ∈ 
�2
V ∗ ⊕ 

�2
V ⊕ End(V ) 

In terms of the basis, say B = Bij e
i ∧ej , βij ei ∧ej , and A = Ai

j ei ⊗ej . In CL(V ⊕V ∗), these become Bij e
iej , 

βij ej ei and 1
2 A

j
i (ej e

i − eiej ), respectively. Consider the action of each type of element on the spinors. 

(Bij e 
i ej ) ρ = Bij e 

i ∧ ei ∧ ρ = −B ∧ ρ· 

(βij ej ei) ρ = βij iej iei ρ = iβ ρ· 

1 
Aj (ej e 

i i ej ) ρ =
1 
Aj (iej (e 

i i ρ) = ( 
1 
Aj δi j i 1

TrA
2 i − e · 

2 i ∧ ρ) − e ∧ iej 2 i j )ρ − Ai e ∧ ej ρ =
2 

ρ − A∗ρ 

Given B ∈ 
�2
V ∗, recall the B field transform e−B . This acts on the spinors via 

1 
e−B
 · ρ = ρ + B ∧ ρ + 

2! 
B ∧ B ∧ ρ + · · ·


Note that there are only finitely many terms in the above. 
Similarly, given β ∈ 

�2
V , we have 

1 
e β ρ = ρ + iβ ρ + iβ iβ ρ +· 

2 
· · · 

For A ∈ End(V ), eA ≡ g ∈ GL+(V ), we have 

g ρ = det(g) g∗−1 ρ· · 

so that, as a GL+(V ) representation, S ∼= ·
V ∗ ⊗ (detV )1/2 . 
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5.3 A Bilinear Pairing on Spinors


Let ρ, φ ∈ ·
V ∗ and consider the reversal map α : ·

V ∗ → ·
V ∗ where 

α

ξ1 ∧ · · · ∧ ξk �−→ ξk ∧ · · · ∧ ξ1


Define 
(ρ, φ) = [α(ρ) ∧ φ]n ∈ detV ∗ 

where n = dim V , and the subscript n on the bracket indicates that we take only the degree n parts of the 
resulting form. 

Proposition 3. For x ∈ CL(V ⊕ V ∗), (x ρ, φ) = (φ, α(x) φ)· · 

Proof. Recall that (x ρ)f = xρf and· 

(ρ, φ) = if (ρ, φ)f 

= if (α(ρ) ∧ φ))f 

= α(f)α(ρ)φf 

= α(ρf)φf 

so (x ρ, φ) = α(xρf)φf = α(ρf)α(x)φf = (ρ, α(x)φ).· 

Corollary 2. We have 
(v ρ, v φ) = (ρ, α(v)v φ) = �v, v�(ρ, φ)· · · 

Also, for g ∈ Spin(V ⊕ V ∗), 
(g ρ, g φ) = ±1(ρ, φ)· · 

Example. Suppose n = 4, and ρ, φ ∈ ev
V ∗, so that 

ρ = ρ0 + ρ2 + ρ4 

and similarly for φ, where the subscripts indicate forms of degree 0, 2, and 4. Then α(ρ) = ρ0 − ρ2 + ρ4 and 

(ρ, φ) = (ρ0 − ρ2 + ρ4) ∧ (φ0 + φ2 + φ4) = ρ0φ4 + φ0ρ4 − ρ2 ∧ φ24 

If n = 4 and ρ, φ ∈ 
�od

V ∗, then 

(ρ, φ) = (ρ1 − ρ3) ∧ (φ1 + φ3) = ρ1 ∧ φ3 − ρ3 ∧ φ1.4 

2Proposition 4. In general, (ρ, φ) = (−1) 
n(n−1) 

(φ, ρ) 

Problem. • What is the signature of (, ) when symmetric? 

• Show that (, ) is non-degenerate on S±. 

• Show that in dimension 4, the 16 dimensional space ·
V ∗ has a non degenerate symmetric form 
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5.4 Pure Sphors 
Let 4 E A'tFC be any nonzero spinor, and d&e the nulI space of 4 as 

L9 = {X+t  E V e V *  : (X +t) -$=00). 

It is deas then that &$ depends equi-tly on d under the spin representation. If 

& - g . + >  g € Spin(V EB If*$ 

where p : Sph[V V*) + s o p  Y*) as b d m  The key prop* of the null space h that Tt h *Isotrapic. 
W e d ,  if x, y E L# we have 

2(x,vM = (w + wj@ = 0. 

~ ~ ~ ~ V ~ , O i s p u r e ~ ~ L ~ = ( X + ~ : ~ B + ~ r i 0 = 0 ) = ~ 6 ~ { 8 )  whicbisZ5ir~;hdeedthisfs 
what we eded Lwer 8,O). 

Simihrly, wkdming eB@, have Leps = &(Ker 0,. f * B). 

Given aDirwstructure L(E,e], choose 01, ...,@A guehthat (01, ..., 8,) = h E .  C~OOM 3 E A'V* 
s u & W f f B = ~ .  ~ $ = e - B 8 L ~ - . m ~ B ~ i s p u r e o t n d L c = L ( E , c ) ,  


