5 Lecture 5 (Notes: C. Kottke)

5.1 Spinors

We have a natural action of $V \oplus V^*$ on $\bigwedge V^*$. Indeed, if $X + \xi \in V \oplus V^*$ and $\rho \in \bigwedge V^*$, let

$$(X+\xi)\cdot\rho=i_X\rho+\xi\wedge\rho$$

Then

$$(X+\xi)^2 \cdot \rho = i_X(i_X\rho + \xi \wedge \rho) + \xi \wedge (i_X\rho + \xi \wedge \rho)$$

= $(i_X\xi)\rho - \xi \wedge i_X\rho + \xi \wedge i_X\rho$
= $\langle X+\xi, X+\xi \rangle \rho$

where \langle , \rangle is the natural symmetric bilinear form on $V \oplus V^*$:

$$\langle X + \xi, Y + \eta \rangle = \frac{1}{2}(\xi(Y) + \eta(X))$$

Thus we have an action of $v \in V \oplus V^*$ with $v^2 \rho = \langle v, v \rangle \rho$. This is the defining relation for the Clifford Algebra $CL(V \oplus V^*)$.

For a general vector space E, $CL(E, \langle, \rangle)$ is defined by

$$CL(E,\langle,\rangle) = \bigotimes E/\langle v \otimes v - \langle v,v \rangle 1 \rangle$$

That is, $CL(E, \langle, \rangle)$ is the quotient of the graded tensor product of E by the free abelian group generated by all elements of the form $v \otimes v - \langle v, v \rangle 1$ for $v \in E$. Note in particular that if $\langle, \rangle \equiv 0$ then $CL(E, \langle, \rangle) = \bigwedge^{\cdot} E$.

We therefore have representation $CL(V \oplus V^*) \xrightarrow{\cong} \operatorname{End}(\bigwedge V^*) \cong \operatorname{End}(\mathbb{R}^{2^n})$ where $n = \dim V$. This is called the "spin" representation for $CL(V \oplus V^*)$.

Choose an orthonormal basis for $V \oplus V^*$, i.e. $\{e_1 \pm e^1, \ldots, e_n \pm e^n\}$. The clifford algebra has a natural volume element in terms of this basis given by

$$\omega \equiv (-1)^{\frac{n(n-1)}{2}} (e_1 - e^1) \cdots (e_n - e^n) (e_1 + e^1) \cdots (e_n + e^n).$$

Problem. Show $\omega^1 = 1$, $\omega e_i = -e_i \omega$, $\omega e^i = -e^i \omega$, and $\omega \cdot 1 = 1$, considering 1 as the element in $\bigwedge^0 V^*$ acted on by the clifford algebra.

The eigenspace of ω is naturally split, and we have

$$S^{+} \equiv \operatorname{Ker}(\omega - 1) = \bigwedge^{\operatorname{ev}} V^{*}$$
$$S^{-} \equiv \operatorname{Ker}(\omega + 1) = \bigwedge^{\operatorname{od}} V^{*}$$

The e^i are known as "creation operators" and the e_i as "annihilation operators". We define the "spinors" S by

$$S = \bigwedge V^* = S^+ \oplus S^-$$

Here is another view. V is naturally embedded in $V \oplus V^*$, so we have

$$CL(V) = \bigwedge V \subset CL(V \oplus V^*)$$

since $\langle V, V \rangle = 0$. Note in particular that det $V \subset CL(V \oplus V^*)$, where det V is generated by $e_1 \cdots e_n$ in terms of our basis elements. det V is a minimal ideal in $CL(V \oplus V^*)$, so $CL(V \oplus V^*) \cdot \det V \subset CL(V \oplus V^*)$. Elements of $CL(V \oplus V^*) \cdot \det V$ are generated by elements which look like

$$\underbrace{(1, e^i, e^i e^j, \ldots)}_{\text{no } e_i} \quad \underbrace{e_1 \cdots e_n}_{\equiv f \in \det V}$$

For $x \in CL(V \oplus V^*)$ and $\rho \in S$, the action $x \cdot \rho$ satisfies $x \rho f = (x \cdot \rho)f$.

Problem. Show that this action coincides with the Cartan action.

5.2 The Spin Group

The spin group $\operatorname{Spin}(V \oplus V^*) \subset CL(V \oplus V^*)$ is defined by

$$\operatorname{Spin}(V \oplus V^*) = \{v_1 \cdots v_r : v_i \in V \oplus V^*, \langle v_i, v_i \rangle = \pm, r \text{ even.}\}$$

 $\operatorname{Spin}(V \oplus V^*)$ is a double cover of the special orthogonal group $\operatorname{SO}(V \oplus V^*)$; there is a map

$$\rho: \operatorname{Spin}(V \oplus V^*) \xrightarrow{2:1} \operatorname{SO}(V \oplus V^*)$$

where the action $\rho(x) \cdot v = xvx^{-1}$ in $CL(V \oplus V^*)$.

The adjoint action in the Lie algebra $\mathfrak{so}(V \oplus V^*)$ is given by

$$d\rho_x: v \longmapsto [x,v]$$

where [,] is the commutator in $CL(V \oplus V^*)$, so

$$\mathfrak{so}(V \oplus V^*) = \operatorname{span}\{[x, y] : x, y \in V \oplus V^*\} \cong \bigwedge^2 (V \oplus V^*).$$

Recall that $\bigwedge^2 (V \oplus V^*) = \bigwedge^2 V^* \oplus \bigwedge^2 V \oplus \text{End}(V)$, so a generic element in $\bigwedge^2 (V \oplus V^*)$ looks like

$$B + \beta + A \in \bigwedge^2 V^* \oplus \bigwedge^2 V \oplus \operatorname{End}(V)$$

In terms of the basis, say $B = B_{ij}e^i \wedge e^j$, $\beta^{ij}e_i \wedge e_j$, and $A = A_i^j e^i \otimes e_j$. In $CL(V \oplus V^*)$, these become $B_{ij}e^i e^j$, $\beta^{ij}e_je_i$ and $\frac{1}{2}A_i^j(e_je^i - e^ie_j)$, respectively. Consider the action of each type of element on the spinors.

$$(B_{ij}e^{i}e^{j}) \cdot \rho = B_{ij}e^{i} \wedge e_{i} \wedge \rho = -B \wedge \rho$$

$$(\beta^{ij}e_{j}e_{i}) \cdot \rho = \beta^{ij}i_{e_{j}}i_{e_{i}}\rho = i_{\beta}\rho$$

$$\left(\frac{1}{2}A_{i}^{j}(e_{j}e^{i} - e^{i}e_{j})\right) \cdot \rho = \frac{1}{2}A_{i}^{j}(i_{e_{j}}(e^{i} \wedge \rho) - e^{i} \wedge i_{e_{j}}\rho) = (\frac{1}{2}A_{i}^{j}\delta_{j}^{i})\rho - A_{i}^{j}e^{i} \wedge e_{j}\rho = \left(\frac{1}{2}\mathrm{Tr}A\right)\rho - A^{*}\rho$$

Given $B \in \bigwedge^2 V^*$, recall the B field transform e^{-B} . This acts on the spinors via

$$e^{-B} \cdot \rho = \rho + B \wedge \rho + \frac{1}{2!} B \wedge B \wedge \rho + \cdots$$

Note that there are only finitely many terms in the above.

Similarly, given $\beta \in \bigwedge^2 V$, we have

$$e^{\beta} \cdot \rho = \rho + i_{\beta}\rho + \frac{1}{2}i_{\beta}i_{\beta}\rho + \cdots$$

For $A \in \text{End}(V)$, $e^A \equiv g \in \text{GL}^+(V)$, we have

$$g \cdot \rho = \sqrt{\det(g)} \left(g^{*-1}\right) \cdot \rho$$

so that, as a $\operatorname{GL}^+(V)$ representation, $S \cong \bigwedge^{\cdot} V^* \otimes (\det V)^{1/2}$.

5.3 A Bilinear Pairing on Spinors

Let $\rho, \phi \in \bigwedge^{\cdot} V^*$ and consider the reversal map $\alpha : \bigwedge^{\cdot} V^* \to \bigwedge^{\cdot} V^*$ where

$$\xi_1 \wedge \dots \wedge \xi_k \xrightarrow{\alpha} \xi_k \wedge \dots \wedge \xi_1$$

Define

$$(\rho, \phi) = [\alpha(\rho) \land \phi]_n \in \det V^*$$

where $n = \dim V$, and the subscript n on the bracket indicates that we take only the degree n parts of the resulting form.

Proposition 3. For $x \in CL(V \oplus V^*)$, $(x \cdot \rho, \phi) = (\phi, \alpha(x) \cdot \phi)$

Proof. Recall that $(x \cdot \rho)f = x\rho f$ and

$$\begin{aligned} (\rho,\phi) &= i_f(\rho,\phi)f \\ &= i_f(\alpha(\rho) \wedge \phi))f \\ &= \alpha(f)\alpha(\rho)\phi f \\ &= \alpha(\rho f)\phi f \end{aligned}$$

so $(x \cdot \rho, \phi) = \alpha(x\rho f)\phi f = \alpha(\rho f)\alpha(x)\phi f = (\rho, \alpha(x)\phi).$

Corollary 2. We have

$$(v \cdot \rho, v \cdot \phi) = (\rho, \alpha(v)v \cdot \phi) = \langle v, v \rangle (\rho, \phi)$$

Also, for $g \in Spin(V \oplus V^*)$,

$$(g \cdot \rho, g \cdot \phi) = \pm 1(\rho, \phi)$$

Example. Suppose n = 4, and $\rho, \phi \in \bigwedge^{ev} V^*$, so that

 $\rho = \rho_0 + \rho_2 + \rho_4$

and similarly for ϕ , where the subscripts indicate forms of degree 0, 2, and 4. Then $\alpha(\rho) = \rho_0 - \rho_2 + \rho_4$ and

$$(\rho, \phi) = \left[(\rho_0 - \rho_2 + \rho_4) \land (\phi_0 + \phi_2 + \phi_4) \right]_4 = \rho_0 \phi_4 + \phi_0 \rho_4 - \rho_2 \land \phi_2$$

If n = 4 and $\rho, \phi \in \bigwedge^{\operatorname{od}} V^*$, then

$$(\rho, \phi) = [(\rho_1 - \rho_3) \land (\phi_1 + \phi_3)]_4 = \rho_1 \land \phi_3 - \rho_3 \land \phi_1.$$

Proposition 4. In general, $(\rho, \phi) = (-1)^{\frac{n(n-1)}{2}}(\phi, \rho)$

• What is the signature of (,) when symmetric?

- Show that (,) is non-degenerate on S^{\pm} .
- Show that in dimension 4, the 16 dimensional space $\bigwedge V^*$ has a non degenerate symmetric form

5.4 Pure Spinors

Let $\phi \in \bigwedge V^*$ be any nonzero spinor, and define the null space of ϕ as

$$L_{\phi} = \{ X + \xi \in V \oplus V^* : (X + \xi) \cdot \phi = 0 \}.$$

It is clear then that L_{ϕ} depends equivariantly on ϕ under the spin representation. If

$$\phi \mapsto g \cdot \phi, \qquad g \in \operatorname{Spin}(V \oplus V^*)$$

then

$$L_{\phi} \mapsto \rho(g) L_{\phi}$$

where ρ : Spin $(V \oplus V^*) \to \mathfrak{so}(V \oplus V^*)$ as before. The key property of the null space is that it is isotropic. Indeed, if $x, y \in L_{\phi}$ we have

$$2\langle x, y \rangle \phi = (xy + yx)\phi = 0.$$

Thus $L_{\phi} \subset L_{\phi}^{\perp}$.

If $L_{\phi} = L_{\phi}^{\perp}$, that is, if L_{ϕ} is maximal, then ϕ is called "*pure*". We have therefore that ϕ is pure if and only if L_{ϕ} is Dirac.

Example. • Take $\phi = e^1 \wedge \cdots \wedge e^n$. Then $L_{\phi} = V^*$.

- Take $1 \in \bigwedge^0 V^*$. Then $L_1 = V$. For $B \in \bigwedge^2 V^*$, then $e^{-B} \cdot 1 = 1 B + 1/2B \wedge B + \cdots$. So $L_{e^B} = e^B(L_1) = e^B(V) = \Gamma_B$.
- For $\theta \in V^*$, θ is pure since $L_{\theta} = \{X + \xi : i_X \theta + \xi \land \theta = 0\} = \text{Ker } \theta \oplus \langle \theta \rangle$ which is Dirac; indeed this is what we called $L(\text{Ker } \theta, 0)$.
- Similarly, considering $e^B \theta$, we have $L_{e^B \theta} = L(\text{Ker } \theta, f^*B)$.
- Given a Dirac structure $L(E,\epsilon)$, choose $\theta_1, \ldots, \theta_k$ such that $\langle \theta_1, \ldots, \theta_k \rangle = \text{Ann } E$. Choose $B \in \bigwedge^2 V^*$ such that $f_{\epsilon}^* B = \epsilon$. Then $\phi = e^{-B} \theta_1 \wedge \cdots \wedge \theta_k$ is pure and $L_{\phi} = L(E,\epsilon)$.

Problem. • Show $L_{\phi} \cap L_{\phi'} = \{\emptyset\} \Leftrightarrow (\phi, \phi') \neq 0$.

• Let dim V = 4, and $\rho = \rho_0 + \rho_2 + \rho_4 \neq 0$. Show that ρ is pure iff $2\rho_0\rho_4 = \rho_2 \wedge \rho_2$.