5 Lecture 5 (Notes: C. Kottke)

5.1 Spinors

We have a natural action of $V \oplus V^{*}$ on $\bigwedge^{\prime} V^{*}$. Indeed, if $X+\xi \in V \oplus V^{*}$ and $\rho \in \bigwedge^{*} V^{*}$, let

$$
(X+\xi) \cdot \rho=i_{X} \rho+\xi \wedge \rho
$$

Then

$$
\begin{aligned}
(X+\xi)^{2} \cdot \rho & =i_{X}\left(i_{X} \rho+\xi \wedge \rho\right)+\xi \wedge\left(i_{X} \rho+\xi \wedge \rho\right) \\
& =\left(i_{X} \xi\right) \rho-\xi \wedge i_{X} \rho+\xi \wedge i_{X} \rho \\
& =\langle X+\xi, X+\xi\rangle \rho
\end{aligned}
$$

where \langle,$\rangle is the natural symmetric bilinear form on V \oplus V^{*}$:

$$
\langle X+\xi, Y+\eta\rangle=\frac{1}{2}(\xi(Y)+\eta(X))
$$

Thus we have an action of $v \in V \oplus V^{*}$ with $v^{2} \rho=\langle v, v\rangle \rho$. This is the defining relation for the Clifford Algebra $C L\left(V \oplus V^{*}\right)$.

For a general vector space $E, C L(E,\langle\rangle$,$) is defined by$

$$
C L(E,\langle,\rangle)=\bigotimes E /\langle v \otimes v-\langle v, v\rangle 1\rangle
$$

That is, $C L(E,\langle\rangle$,$) is the quotient of the graded tensor product of E$ by the free abelian group generated by all elements of the form $v \otimes v-\langle v, v\rangle 1$ for $v \in E$. Note in particular that if $\langle,\rangle \equiv 0$ then $C L(E,\langle\rangle)=,\bigwedge E$.

We therefore have representation $C L\left(V \oplus V^{*}\right) \xrightarrow{\cong} \operatorname{End}\left(\bigwedge^{*} V^{*}\right) \cong \operatorname{End}\left(\mathbb{R}^{2^{n}}\right)$ where $n=\operatorname{dim} V$. This is called the "spin" representation for $C L\left(V \oplus V^{*}\right)$.

Choose an orthonormal basis for $V \oplus V^{*}$, i.e. $\left\{e_{1} \pm e^{1}, \ldots, e_{n} \pm e^{n}\right\}$. The clifford algebra has a natural volume element in terms of this basis given by

$$
\omega \equiv(-1)^{\frac{n(n-1)}{2}}\left(e_{1}-e^{1}\right) \cdots\left(e_{n}-e^{n}\right)\left(e_{1}+e^{1}\right) \cdots\left(e_{n}+e^{n}\right)
$$

Problem. Show $\omega^{1}=1, \omega e_{i}=-e_{i} \omega, \omega e^{i}=-e^{i} \omega$, and $\omega \cdot 1=1$, considering 1 as the element in $\bigwedge^{0} V^{*}$ acted on by the clifford algebra.

The eigenspace of ω is naturally split, and we have

$$
\begin{aligned}
& S^{+} \equiv \operatorname{Ker}(\omega-1)=\bigwedge^{\mathrm{ev}} V^{*} \\
& S^{-} \equiv \operatorname{Ker}(\omega+1)=\bigwedge^{\mathrm{od}} V^{*}
\end{aligned}
$$

The e^{i} are known as "creation operators" and the e_{i} as "annihilation operators". We define the "spinors" S by

$$
S=\bigwedge^{\prime} V^{*}=S^{+} \oplus S^{-}
$$

Here is another view. V is naturally embedded in $V \oplus V^{*}$, so we have

$$
C L(V)=\bigwedge V \subset C L\left(V \oplus V^{*}\right)
$$

since $\langle V, V\rangle=0$. Note in particular that $\operatorname{det} V \subset C L\left(V \oplus V^{*}\right)$, where $\operatorname{det} V$ is generated by $e_{1} \cdots e_{n}$ in terms of our basis elements. $\operatorname{det} V$ is a minimal ideal in $C L\left(V \oplus V^{*}\right)$, so $C L\left(V \oplus V^{*}\right) \cdot \operatorname{det} V \subset C L\left(V \oplus V^{*}\right)$. Elements of $C L\left(V \oplus V^{*}\right) \cdot \operatorname{det} V$ are generated by elements which look like

$$
\underbrace{\left(1, e^{i}, e^{i} e^{j}, \ldots\right)}_{\text {no } e_{i}} \underbrace{e_{1} \cdots e_{n}}_{\equiv f \in \operatorname{det} V}
$$

For $x \in C L\left(V \oplus V^{*}\right)$ and $\rho \in S$, the action $x \cdot \rho$ satisfies $x \rho f=(x \cdot \rho) f$.
Problem. Show that this action coincides with the Cartan action.

5.2 The Spin Group

The spin group $\operatorname{Spin}\left(V \oplus V^{*}\right) \subset C L\left(V \oplus V^{*}\right)$ is defined by

$$
\operatorname{Spin}\left(V \oplus V^{*}\right)=\left\{v_{1} \cdots v_{r}: v_{i} \in V \oplus V^{*},\left\langle v_{i}, v_{i}\right\rangle= \pm, r \text { even. }\right\}
$$

$\operatorname{Spin}\left(V \oplus V^{*}\right)$ is a double cover of the special orthogonal group $\mathrm{SO}\left(V \oplus V^{*}\right)$; there is a map

$$
\rho: \operatorname{Spin}\left(V \oplus V^{*}\right) \xrightarrow{2: 1} \mathrm{SO}\left(V \oplus V^{*}\right)
$$

where the action $\rho(x) \cdot v=x v x^{-1}$ in $C L\left(V \oplus V^{*}\right)$.
The adjoint action in the Lie algebra $\mathfrak{s o}\left(V \oplus V^{*}\right)$ is given by

$$
d \rho_{x}: v \longmapsto[x, v]
$$

where [,] is the commutator in $C L\left(V \oplus V^{*}\right)$, so

$$
\mathfrak{s o (V \oplus V ^ { * }) = \operatorname { s p a n } \{ [x , y] : x , y \in V \oplus V ^ { * } \} \cong \bigwedge ^ { 2 } (V \oplus V ^ { * }) ~}
$$

Recall that $\bigwedge^{2}\left(V \oplus V^{*}\right)=\bigwedge^{2} V^{*} \oplus \bigwedge^{2} V \oplus \operatorname{End}(V)$, so a generic element in $\bigwedge^{2}\left(V \oplus V^{*}\right)$ looks like

$$
B+\beta+A \in \bigwedge^{2} V^{*} \oplus \bigwedge^{2} V \oplus \operatorname{End}(V)
$$

In terms of the basis, say $B=B_{i j} e^{i} \wedge e^{j}, \beta^{i j} e_{i} \wedge e_{j}$, and $A=A_{i}^{j} e^{i} \otimes e_{j}$. In $C L\left(V \oplus V^{*}\right)$, these become $B_{i j} e^{i} e^{j}$, $\beta^{i j} e_{j} e_{i}$ and $\frac{1}{2} A_{i}^{j}\left(e_{j} e^{i}-e^{i} e_{j}\right)$, respectively. Consider the action of each type of element on the spinors.

$$
\begin{gathered}
\left(B_{i j} e^{i} e^{j}\right) \cdot \rho=B_{i j} e^{i} \wedge e_{i} \wedge \rho=-B \wedge \rho \\
\left(\beta^{i j} e_{j} e_{i}\right) \cdot \rho=\beta^{i j} i_{e_{j}} i_{e_{i}} \rho=i_{\beta} \rho \\
\left(\frac{1}{2} A_{i}^{j}\left(e_{j} e^{i}-e^{i} e_{j}\right)\right) \cdot \rho=\frac{1}{2} A_{i}^{j}\left(i_{e_{j}}\left(e^{i} \wedge \rho\right)-e^{i} \wedge i_{e_{j}} \rho\right)=\left(\frac{1}{2} A_{i}^{j} \delta_{j}^{i}\right) \rho-A_{i}^{j} e^{i} \wedge e_{j} \rho=\left(\frac{1}{2} \operatorname{Tr} A\right) \rho-A^{*} \rho
\end{gathered}
$$

Given $B \in \bigwedge^{2} V^{*}$, recall the B field transform e^{-B}. This acts on the spinors via

$$
e^{-B} \cdot \rho=\rho+B \wedge \rho+\frac{1}{2!} B \wedge B \wedge \rho+\cdots
$$

Note that there are only finitely many terms in the above.
Similarly, given $\beta \in \Lambda^{2} V$, we have

$$
e^{\beta} \cdot \rho=\rho+i_{\beta} \rho+\frac{1}{2} i_{\beta} i_{\beta} \rho+\cdots
$$

For $A \in \operatorname{End}(V), e^{A} \equiv g \in \mathrm{GL}^{+}(V)$, we have

$$
g \cdot \rho=\sqrt{\operatorname{det}(g)}\left(g^{*-1}\right) \cdot \rho
$$

so that, as a $\mathrm{GL}^{+}(V)$ representation, $S \cong \bigwedge^{\cdot} V^{*} \otimes(\operatorname{det} V)^{1 / 2}$.

5.3 A Bilinear Pairing on Spinors

Let $\rho, \phi \in \bigwedge V^{*}$ and consider the reversal map $\alpha: \bigwedge^{\prime} V^{*} \rightarrow \bigwedge V^{*}$ where

$$
\xi_{1} \wedge \cdots \wedge \xi_{k} \stackrel{\alpha}{\longmapsto} \xi_{k} \wedge \cdots \wedge \xi_{1}
$$

Define

$$
(\rho, \phi)=[\alpha(\rho) \wedge \phi]_{n} \in \operatorname{det} V^{*}
$$

where $n=\operatorname{dim} V$, and the subscript n on the bracket indicates that we take only the degree n parts of the resulting form.

Proposition 3. For $x \in C L\left(V \oplus V^{*}\right),(x \cdot \rho, \phi)=(\phi, \alpha(x) \cdot \phi)$
Proof. Recall that $(x \cdot \rho) f=x \rho f$ and

$$
\begin{aligned}
(\rho, \phi) & =i_{f}(\rho, \phi) f \\
& \left.=i_{f}(\alpha(\rho) \wedge \phi)\right) f \\
& =\alpha(f) \alpha(\rho) \phi f \\
& =\alpha(\rho f) \phi f
\end{aligned}
$$

so $(x \cdot \rho, \phi)=\alpha(x \rho f) \phi f=\alpha(\rho f) \alpha(x) \phi f=(\rho, \alpha(x) \phi)$.
Corollary 2. We have

$$
(v \cdot \rho, v \cdot \phi)=(\rho, \alpha(v) v \cdot \phi)=\langle v, v\rangle(\rho, \phi)
$$

Also, for $g \in \operatorname{Spin}\left(V \oplus V^{*}\right)$,

$$
(g \cdot \rho, g \cdot \phi)= \pm 1(\rho, \phi)
$$

Example. Suppose $n=4$, and $\rho, \phi \in \bigwedge^{\mathrm{ev}} V^{*}$, so that

$$
\rho=\rho_{0}+\rho_{2}+\rho_{4}
$$

and similarly for ϕ, where the subscripts indicate forms of degree 0,2 , and 4 . Then $\alpha(\rho)=\rho_{0}-\rho_{2}+\rho_{4}$ and

$$
(\rho, \phi)=\left[\left(\rho_{0}-\rho_{2}+\rho_{4}\right) \wedge\left(\phi_{0}+\phi_{2}+\phi_{4}\right)\right]_{4}=\rho_{0} \phi_{4}+\phi_{0} \rho_{4}-\rho_{2} \wedge \phi_{2}
$$

If $n=4$ and $\rho, \phi \in \bigwedge^{\mathrm{od}} V^{*}$, then

$$
(\rho, \phi)=\left[\left(\rho_{1}-\rho_{3}\right) \wedge\left(\phi_{1}+\phi_{3}\right)\right]_{4}=\rho_{1} \wedge \phi_{3}-\rho_{3} \wedge \phi_{1}
$$

Proposition 4. In general, $(\rho, \phi)=(-1)^{\frac{n(n-1)}{2}}(\phi, \rho)$
Problem. - What is the signature of (,) when symmetric?

- Show that $($,$) is non-degenerate on S^{ \pm}$.
- Show that in dimension 4 , the 16 dimensional space $\bigwedge^{*} V^{*}$ has a non degenerate symmetric form

5.4 Pure Spinors

Let $\phi \in \Lambda V^{*}$ be any nonzero spinor, and define the null space of ϕ as

$$
L_{\phi}=\left\{X+\xi \in V \oplus V^{*}:(X+\xi) \cdot \phi=0\right\}
$$

It is clear then that L_{ϕ} depends equivariantly on ϕ under the spin representation. If

$$
\phi \mapsto g \cdot \phi, \quad g \in \operatorname{Spin}\left(V \oplus V^{*}\right)
$$

then

$$
L_{\phi} \mapsto \rho(g) L_{\phi}
$$

where $\rho: \operatorname{Spin}\left(V \oplus V^{*}\right) \rightarrow s o\left(V \oplus V^{*}\right)$ as before. The key property of the null space is that it is isotropic. Indeed, if $x, y \in L_{\phi}$ we have

$$
2\langle x, y\rangle \phi=(x y+y x) \phi=0
$$

Thus $L_{\phi} \subset L_{\phi}^{\perp}$.
If $L_{\phi}=L_{\phi}^{\perp}$, that is, if L_{ϕ} is maximal, then ϕ is called "pure". We have therefore that ϕ is pure if and only if L_{ϕ} is Dirac.
Example. - Take $\phi=e^{1} \wedge \cdots \wedge e^{n}$. Then $L_{\phi}=V^{*}$.

- Take $1 \in \bigwedge^{0} V^{*}$. Then $L_{1}=V$. For $B \in \bigwedge^{2} V^{*}$, then $e^{-B} \cdot 1=1-B+1 / 2 B \wedge B+\cdots$. So $L_{e^{B}}=e^{B}\left(L_{1}\right)=e^{B}(V)=\Gamma_{B}$.
- For $\theta \in V^{*}, \theta$ is pure since $L_{\theta}=\left\{X+\xi: i_{X} \theta+\xi \wedge \theta=0\right\}=\operatorname{Ker} \theta \oplus\langle\theta\rangle$ which is Dirac; indeed this is what we called $L(\operatorname{Ker} \theta, 0)$.
- Similarly, considering $e^{B} \theta$, we have $L_{e^{B} \theta}=L\left(\operatorname{Ker} \theta, f^{*} B\right)$.
- Given a Dirac structure $L(E, \epsilon)$, choose $\theta_{1}, \ldots, \theta_{k}$ such that $\left\langle\theta_{1}, \ldots, \theta_{k}\right\rangle=$ Ann E. Choose $B \in \Lambda^{2} V^{*}$ such that $f_{\epsilon}^{*} B=\epsilon$. Then $\phi=e^{-B} \theta_{1} \wedge \cdots \wedge \theta_{k}$ is pure and $L_{\phi}=L(E, \epsilon)$.

Problem. - Show $L_{\phi} \cap L_{\phi^{\prime}}=\{\emptyset\} \Leftrightarrow\left(\phi, \phi^{\prime}\right) \neq 0$.

- Let $\operatorname{dim} V=4$, and $\rho=\rho_{0}+\rho_{2}+\rho_{4} \neq 0$. Show that ρ is pure iff $2 \rho_{0} \rho_{4}=\rho_{2} \wedge \rho_{2}$.

