3 Lecture 3 (Notes: J. Bernstein)

3.1 Almost Complex Structure

Let $J \in \mathbb{C}^{\infty}(\operatorname{End}(T))$ be such that $J^{2}=-1$. Such a J is called an almost complex structure and makes the real tangent bundle into a complex vector bundle via declaring $i v=J(v)$. In particular $\operatorname{dim}_{\mathbb{R}} M=2 n$. This also tells us that the structure group of the tangent bundle reduces from $G l(2 n, \mathbb{R})$ to $G l(n, \mathbb{C})$. Thus T is an associated bundle to a principal $G l(n, \mathbb{C})$ bundle. In particular we have map on the cohomology,

$$
\begin{aligned}
H^{2 i}(M, \mathbb{Z}) & \rightarrow H^{2 i}(M, \mathbb{Z} / 2 \mathbb{Z}) \\
c(T, J) & \mapsto w(T)
\end{aligned}
$$

Where $c(T, J)$ are the Chern classes of T (with complex structure given by J) and $w(T)$ are the StiefelWhitney classes. Here the map is reduction mod 2. In particular $w_{2 i+1}=0$ and $c_{1} \mapsto w_{2}$, the later fact implies that M is $S p i n^{c}$.

Recall that the Pontryagin classes of a vector bundle are $p_{i} \in H^{4 i}$ such that $p_{i}(E)=(-1)^{i} c_{2 i}(E \otimes \mathbb{C})$. We study $p_{i}(T)=(-1)^{i} c_{2 i}(T \otimes \mathbb{C})$. Since the eigenvalues of $J: T \rightarrow T$ are $\pm i$ we have the natural decomposition

$$
T \otimes \mathbb{C}=(\operatorname{Ker}(J-i)) \oplus(\operatorname{Ker}(J+i))=T_{1,0} \oplus T_{0,1}
$$

Here $T_{1,0}$ and $T_{0,1}$ are complex subbundles of $T \otimes \mathbb{C}$ and on has the identifications $\left(T_{1,0}, i\right) \cong(T, J)$ and $\left(T_{0,1}, i\right) \cong(T,-J)$. Hence if we choose a hermitian metric h on T we get a non degenerate pairing,

$$
T_{1,0} \times T_{0,1} \rightarrow \mathbb{C}
$$

and hence $T_{1,0} \cong\left(T_{0,1}\right)^{*}$. We now compute

$$
\sum_{k}(-1)^{k} p_{k}(T)=\sum_{k} c_{2 k}\left(T_{1,0} \oplus T_{0,1}\right)=\sum_{k} \sum_{i} c_{i}\left(T_{1,0}\right) \cup c_{2 k-i}\left(T_{0,1}\right)=\left(\sum_{i} c_{i}\left(T_{1,0}\right)\right) \cup\left(\sum_{j} c_{j}\left(T_{0,1}\right)\right.
$$

where the last equality comes from rearranging the sum. Now we have $c_{i}\left(T_{0,1}\right)=(-1)^{i} c_{i}\left(T_{1,0}\right)$ and since we can identity $T_{1,0}$ with (T, J) we have

$$
\sum_{k}(-1)^{k} p_{k}(T)=\left(\sum_{i} c_{i}(T, J)\right) \cup\left(\sum_{j}(-1)^{j} c_{j}(T, J)\right)
$$

Thus the existence of an almost complex structure implies that one can find classes $c_{i} \in H^{2 i}(M, \mathbb{Z})$ that when taken mod 2 give the Stiefel-Whitney class and that satisfy the above Pontryagin relation.

Problem. Show that $S^{4 k}$ does not admit an almost complex structure.
Remark. Topological obstructions to the existence of an almost complex structure in general are not known.

3.2 Hermitian Structure

Definition 10. A hermitian structure or a real vector space V consists of a triple

- J an almost complex structure
- $\omega: V \rightarrow V^{*} \omega$ symplectic (i.e. $\omega^{*}=-\omega$)
- $g: V \rightarrow V^{*} g$ a metric (i.e. $g^{*}=g$ and if we write $x \mapsto g(x, \cdot)$ then $g(x, x)>0$ for $x \neq 0$)
with the compatibility

$$
g \circ J=\omega
$$

Now pick (J, g) this determines a hermitian structure if and only if

$$
-(g J)=(g J)^{*}=J^{*} g^{*}=J^{*} g
$$

. On the other hand (J, ω) determines a hermitian structure if and only if

$$
-(\omega J)=\left(\omega J^{-1}\right)^{*}=-J^{*} \omega^{*}=J^{*} \omega
$$

that is if and only if $J^{*} \omega+\omega J=0$. Then we have $\left(J^{*} \omega+\omega J\right)(v)(w)=\omega(J x, y)+\omega(x, J y)=0$ which is equivalent to ω of type $(1,1)$. We get three structure groups

$$
\begin{aligned}
& g \mapsto O(V, g)=\left\{A: A^{*} g A=g\right\} \\
& \omega \mapsto \\
& J p(V, \omega)=\left\{A^{*} \omega A=\omega\right\} \\
& J \mapsto G l(V, J)=\{A: A J=J A\}
\end{aligned}
$$

Now if we form $h=g+i \omega$ we obtain a hermitian metric on V. And we have structure group

$$
\operatorname{Stab}(h)=U(V, h)=O(v, h) \cap S p(V, \omega)=G l(V, J) \cap O(V, g)=S p(V, \omega) \cap G l(V, J)
$$

we note $U(V, h)$ is the maximal compact subgroup of $G l(V, J)$.
Problem. 1. Show Explicitly that given J one can always find a compatible ω (or g)
2. Show similarly that givne ω can find compatible g.

3.3 Integrability of J

Since we have a Lie bracket on T we can tensor it with \mathbb{C} and obtain a Lie bracket on $T \otimes \mathbb{C}$. The since $T \otimes \mathbb{C}=T_{1,0} \oplus T_{0,1}$, integrability conditions are thus that the complex distribution $T_{1,0}$ is involutive i.e. $\left[T_{1,0}, T_{1,0}\right] \subseteq T_{1,0}$. How far is this geometry from usual complex structure on \mathbb{C}^{n} ? Idea is if one can form $M^{\mathbb{C}}$ the complexification of M (think of $\mathbb{R} P^{n} \subset \mathbb{C} P^{n}$ or $\mathbb{R}^{n} \subset \mathbb{C}^{n}$, indeed if M is real analytic it is always possible to do this. Then $M^{\mathbb{C}}$ has two transverse foliations by the integrabrility condition (from $T_{1,0}$ and $T_{0,1}$). Say functions $z^{i}: M^{\mathbb{C}} \rightarrow \mathbb{C}$ cut out the leaves of $T_{1,0}$ (i.e. the leaves are given by $z^{1}=z^{2}=\ldots=z^{n}=c$). Then when one restricts the $z^{i} i$ to a neighborhood $U \subseteq M$, obtains maps $z^{1}, \ldots, z^{n}: U \rightarrow \mathbb{C}$ such that $<d z^{1}, \ldots, d z^{n}>=T_{1,0}^{*}=\operatorname{Ann}\left(T_{0,1}\right.$. That is one obtains a holomorphic coordinate chart. Moreover in this chart one has

$$
J=\sum_{k} i\left(d z^{k} \otimes \frac{\partial}{\partial z^{k}}+d \bar{z}^{k} \otimes \frac{\partial}{\partial \bar{z}^{k}}\right)
$$

Remark. This is similar to the Darboux theorem of symplectic geometry
More generally we have
Theorem 4. (Newlander-Nirenberg) If M is a smooth manifold with smooth almost complex structure J that is integrable then M is actually complex.

Note. This was most recently treated by Malgrange.
Now $T_{1,0}$ closed under [,] happens if and only if for $X \in T, X-i J X \in T_{1,0}$ one has $[X-i J X, Y-i J Y]=$ $Z-i J Z$. That is $[X, Y]-[J X, J Y]+J[X, J Y]+J[J X, Y]=0$

Definition 11. We define the Nijenhuis tensor as $N_{J}(X, Y)=[X, Y]-[J X, J Y]+J[X, J Y]+J[J X, Y]$
Problem. Show that N_{J} is a tensor in $C^{\infty}\left(\bigwedge^{2} T^{*} \otimes T\right)$.
Thus one has J integrable if and only if $N_{J}=0$.

Remark. $N_{J}=0$ is the analog of $d \omega \in C^{\infty}\left(\bigwedge^{3} T^{*}\right)$
Now if we view $J \in \operatorname{End}(T)=\Omega^{1}(T)=\sum \xi^{i} \otimes \nu_{i}$ then J acts on differential forms, $\rho \in \Omega^{\cdot}(M)$ by $\imath_{J}(\rho)=\sum \xi^{i} \wedge \imath_{v_{i}} \rho=\sum\left(e_{\xi^{i}} \cdot \imath_{v_{i}}\right) \rho$. And one computes

$$
\imath_{J}(\alpha \wedge \beta)=\imath_{J}(\alpha) \wedge \beta+(-1)^{\alpha} \alpha \wedge \imath_{J} \beta
$$

thus $\imath_{J} \in \operatorname{Der}^{0}(\Omega(M))$ and we may form $L_{J}=\left[\imath_{J}, d\right] \in \operatorname{Der}^{1}(\Omega \cdot(M))$.
Note. L_{J} is denoted d^{c}
Definition 12. We define the Nijenhuis bracket [,]: $\Omega^{k} \times \Omega^{l} \rightarrow \Omega^{k+l}$ by $L_{[J, K]}=\left[L_{J}, L_{K}\right]$
One checks $\left[L_{J}, L_{J}\right]=L_{N_{J}}$ hence $N_{J}=[J, J]$.

3.4 Forms on a Complex Manifold

In a manner similar with our treatment of foliations, we wish to express integrability in terms of differentiable forms. Let $T_{0,1}\left(\right.$ or $\left.T_{1,0}\right)$ be closed under the complexified Lie bracket. Since Ann $T_{0,1}=T_{1,0}^{*}=<\theta^{1}, \ldots, \theta^{n}>$ (Ann $T_{1,0}=T_{1,0}^{*}$), $\Omega=\theta^{1} \wedge \ldots \theta^{n}$ is a generator for det $T_{1,0}^{*}=K$. Where here K is a complex line bundle. The condition for integrability is then $d \Omega^{n, 0}=\xi^{0,1} \wedge \Omega^{n, 0}$ for some ξ. Taking d again one obtains $0=d \xi \wedge \Omega^{n, 0}-\xi \wedge d \Omega=d \xi \wedge \Omega$, hence $\bar{\partial} \xi=0$. We call $K=\bigwedge^{n} T_{1,0}^{*}$ the canonical bundle.
Note. This definition is deserved since $K \subset \bigwedge T^{*} \otimes \mathbb{C}$ and $T_{0,1}=A n n K=\left\{X \imath_{X} \Omega=0\right\}$, i.e. we can recover the complex structure from K

More fully, there is a decomposition of forms

$$
\begin{gathered}
\dot{\bigwedge} T^{*} \otimes \mathbb{C}=\bigoplus_{p, q}\left(\bigwedge^{p} T_{1,0}^{*} \bigotimes \bigwedge^{q} T_{0,1}^{*}\right) \\
\Omega=\bigoplus_{p, q} \Omega^{p, q}(M)
\end{gathered}
$$

that is a $\mathbb{Z} \times \mathbb{Z}$ grading.
Since $d \Omega^{n, 0}=\xi \wedge \Omega$ we have integrability if and only if $d=\partial+\bar{\partial}$, where here $\partial=\pi_{p, q+1} \circ d$ and $\bar{\partial}=\pi_{p+1, q} \circ d$.

Problem. Show that without integrability

$$
d=\partial+\bar{\partial}+d^{N}
$$

where $N_{J} \in \wedge^{2} T^{*} \otimes T$ and $d^{N}=\imath_{N_{J}}$. Also determine the p, q decomposition of d^{N}.

3.5 Dolbeault Cohomology

Assuming $N_{J}=0$ one has $\partial^{2}=\bar{\partial}^{2}=\partial \bar{\partial}+\bar{\partial} \partial=0$. Thus one gets a complex

$$
\bar{\partial}: \Omega^{p, q}(M) \rightarrow \Omega^{p, q+1}(M)
$$

The cohomology of this complex is called the Dolbeault cohomology and is denoted

$$
\frac{\left.\operatorname{Ker} \bar{\partial}\right|_{\Omega^{p, q}}}{\left.\operatorname{Im} \bar{\partial}\right|_{\Omega^{p, q-1}}}=H_{\bar{\partial}}^{p, q}(M)
$$

This is a $\mathbb{Z} \times \mathbb{Z}$ graded ring. The symbol of $\bar{\partial}$ can be determined from the computation $\left[\bar{\partial}, m_{f}\right]=e_{\bar{\partial} f}$. Now given a real form $\xi \in T^{*}-\{0\}$ then

$$
\begin{aligned}
\bigwedge^{p, q} T^{*} & \rightarrow \bigwedge_{p, q+1}^{p} T^{*} \\
\rho & \mapsto \xi^{0,1} \wedge \rho
\end{aligned}
$$

is elliptic, since $\xi=\xi^{1,0}+\xi^{0,1}=\xi^{1,0}+\overline{\xi^{0.1}}$ (as ξ real) and so $\xi^{0,1} \neq 0$. Hence $\operatorname{dim} H_{\bar{\partial}}^{p, q}<\infty$ on M compact.
Now suppose $E \rightarrow M$ is a complex vector bundle, how does pone make E compatible with the complex structure J on M?

Definition 13. $E \rightarrow M$ a complex vector bundle is a holomorphic if there exists a connection $\bar{\partial}_{E}: C^{\infty}(E) \rightarrow$ $C^{\infty}\left(T_{0,1}^{*} \otimes E\right)$ which is flat (i.e. $\bar{\partial}_{E}^{2}=0$).

This gives us a complex

$$
C^{\infty}\left(T_{0,1}^{*} \otimes E\right) \rightarrow \ldots \rightarrow \Omega^{0, q}(E)=C^{\infty}\left(\wedge^{0, q} T^{*} \otimes E\right) \rightarrow \ldots
$$

The cohomology of this complex is called Dolbeault cohomology with values in E and is denoted $H_{\frac{q}{\partial_{E}}}^{q}(M, E)$. Elliptic theory tells us that M compact implies $H_{\bar{\partial}_{E}}^{q}(M, E)$ is finite dimensional. We note that $\left.\bar{\partial}\right|_{\Omega^{n, 0}}$ is a holomorphic structure on K and hence K is a holomorphic line bundle.

Problem. Find explicitly the $\bar{\partial}_{E}$ operator on $E=T_{1,0}$

