16 Lecture 21-23 (Notes: K. Venkatram)

16.1 Linear Algebra

We define a category \mathcal{H} whose objects are pairs (E, g) (sometimes denoted E for brevity), where E is a finite dimensional vector space $/ \mathbb{R}$ and g is a nondegenerate symmetric bilinear form on E with signature 0 , and whose morphisms are maximal isotropies $L \subset \bar{E} \times F$. Here, $E \mapsto \bar{E}=(E,-g)$ is the natural involution, and $E \times F=\left(E \times F, g_{E}+g_{F}\right)$ is the natural product structure. Composition is done by composition of relations, i.e. $E \rightarrow^{L} F \rightarrow^{M} G, M \circ L=\{(e, g) \in E \times G \mid \exists f \in F$ s.t. $(e, f) \in L,(f, g) \in M\}$.

Proposition 11. $M \circ L$ is a morphism in \mathcal{H}.
Proof. $\mathcal{L}: L \times M \subset \bar{E} \times F \times \bar{F} \times G=W$ is maximally isotropic. $\mathcal{C}=E \times \Delta_{F} \times G$, where $\Delta_{F}=\{(f, f) \mid f \in F\}$, is coisotropic, i.e. $\mathcal{C}^{\perp}=\Delta_{F} \subset \mathcal{C}$. Thus, we get an induced bilinear form on $\mathcal{C}^{\perp} / \mathcal{C}=\bar{E} \times G . \mathcal{C} \cap \mathcal{L}+\mathcal{C}^{\perp}$ is maximaly isotropic in W, so

$$
\begin{equation*}
\left(\mathcal{C} \cap \mathcal{L}+\mathcal{C}^{\perp}\right)^{\perp}=\left(\mathcal{C}^{\perp}+\mathcal{L}^{\perp}\right) \cap \mathcal{C}=\mathcal{C}^{\perp}+\mathcal{L} \cap \mathcal{C} \tag{125}
\end{equation*}
$$

Thus, $\mathcal{C} \cap \mathcal{L}+\mathcal{C}^{\perp} / \mathcal{C}^{\perp}=M \circ L \subset \mathcal{C} / \mathcal{C}^{\perp}=\bar{E} \times G$ is maximally isotropic.
Remark. This cateogory is the symmetric version of the Weinstein's symplectic category ζ where $\mathrm{Ob}(\zeta)=(E, \omega)$ and morphisms are given by Lagrangians. Thus, is the the "odd" version or parity reversal of ζ.

A particular case of a morphism $E \rightarrow F$ is the graph of an orthogonal morphism.
Problem. Show that $L: E \rightarrow F$ is epi $\Leftrightarrow \pi_{F}(L)=F$, mono $\Leftrightarrow \pi_{E}(L)=E$, and iso $\Leftrightarrow L$ is orthogonal iso $E \rightarrow F$.

So for $\operatorname{dim} E=2 n, O(n, n) \subset \operatorname{Hom}(E, E)$ are isos. But $\operatorname{Hom}(E, E) \cong O(2 n)$ as a space since we can choose a positive definite C_{+}and then any $L \in O(2 n)$. This implies that $\operatorname{Hom}(E, E)$ is a monoid compactifying the group $O(E)$.

16.1.1 Doubling Functor

Now, there is a nature "Double" functor $\mathcal{D}:$ Vect $\rightarrow \mathcal{H}$ which maps $V \mapsto V \oplus V^{*}$ and $\{f: V \rightarrow M\} \mapsto\left\{\mathcal{D} f=\left\{\left(v+F^{*} \eta, f_{*} v+\eta\right) \in V \oplus V^{*} \times W \oplus W^{*} \mid v \in V, \eta \in W^{*}\right\}\right\}$. Note that $\mathcal{D} f \subset \overline{\mathcal{D} V} \times \mathcal{D} W$ and $\operatorname{dim} \mathcal{D} f=\operatorname{dim} V+\operatorname{dim} W$.

$$
\begin{equation*}
\left\langle\left(v+f^{*} \eta, f_{*} v+\eta\right),\left(v+f^{*} \eta, f_{*} v+\eta\right)\right\rangle=-f^{*} \eta(v)+\eta\left(f_{*} v\right)=0 \tag{126}
\end{equation*}
$$

Problem. Prove that \mathcal{D} is a functor, i.e. $\mathcal{D}(f \circ g)=\mathcal{D} f \circ \mathcal{D} g$.
Note that \mathcal{H} has a duality functor $L \in \operatorname{Hom}(E, F) \Longrightarrow L^{*} \in \operatorname{Hom}(F, E)$, where $L^{*}=\{(f, e) \mid(e, f) \in L\}$.
Problem. Show that $\mathcal{D}\left(f^{*}\right)=(\mathcal{D} f)^{*}$.
Problem. Prove that \mathcal{D} preserves epis and monos.

16.1.2 Maps Induced by Morphisms

A morphism $L \in \operatorname{Hom}(E, F)$ induces maps $L \circ-: \operatorname{Hom}(X, E) \rightleftarrows \operatorname{Hom}(X, F): L^{*} \circ-$. A special case is $X=\{0\}$, in which $\operatorname{Hom}(0, E)=\operatorname{Dir}(E)$, so $L \in \operatorname{Hom}(E, F)$ induces maps $L_{*}: \operatorname{Dir}(E) \rightleftarrows \operatorname{Dir}(F): L^{*}$. If L is mono or epi, so is L_{*}. This recovers the pushforward and pullback of Dirac structures: for $f: V \rightarrow W$ a linear map, $\mathcal{D} f: \mathcal{D} V \rightarrow \mathcal{D} W$ a morphism we obtain maps $\mathcal{D} f_{*}: \operatorname{Dir}(V) \rightleftarrows \operatorname{Dir}(W): \mathcal{D} f^{*}$. As observed earlier, any Dirac $L \subset V \oplus V^{*}$ with $\pi_{V}(L)=M \subset V$ can be written as $L(M, B), B \in \bigwedge^{2} M^{*}$, i.e. $L=j_{*} \Gamma_{B}$ for $j: M \hookrightarrow V$ the embedding and a unique B. That is, $L=j_{*} e^{B} M$.

Example. Given $f: V \rightarrow W$ a linear map, $\mathcal{D} f \subset \overline{\mathcal{D} V} \times \mathcal{D} W=\mathcal{D}\left(V \oplus W^{*}\right)$. and
$\mathcal{D} f=\left(\left(v, f^{*} \eta\right),\left(f_{*} v, \eta\right) \cdots\right)$, hence $\pi_{V \oplus W^{*}} \mathcal{D} f=V \oplus W^{*}$ is onto. Therefore, $\mathcal{D} f=e^{B}\left(V \oplus W^{*}\right)$, and in fact $B=f \in V^{*} \otimes W \subset \bigwedge^{2}\left(V \oplus W^{*}\right)^{*}$.

16.1.3 Factorization of Morphisms $L: \mathcal{D} V \rightarrow \mathcal{D}(W)$

Let $L \in \operatorname{Hom}(\mathcal{D} V, \mathcal{D} W), L \subset \overline{\mathcal{D} V} \times \mathcal{D} W \cong \mathcal{D}(V \oplus W)$. Then $L=j_{*} e^{F} M$, for $M=\pi_{V \oplus W} L \subset V \oplus W$. Let $\phi: M \rightarrow V, \psi: M \rightarrow W$ be the natural projections.

Theorem 13. $L=\mathcal{D} \psi_{*} \circ e^{F} \circ \mathcal{D} \phi^{*}$.
Proof. (Exercise)
Corollary 10. L is an isomorphism $\Leftrightarrow \phi, \psi$ are surjective and F determines a nondegenerate pairing $\operatorname{Ker} \phi \times \operatorname{Ker} \psi \rightarrow \mathbb{R}$.

Therefore, an orthogonal map $V \oplus V^{*} \rightarrow W \oplus W^{*}$ can be viewed as a subspace $M \subset V \times W, F \in \bigwedge^{2} M^{*}$.

16.2 T-duality

The basic idea of T-duality is as follows: let $S^{1} \rightarrow P \rightarrow^{\pi} B$ be a principal S^{1} bundle, i.e. a spacetime with geometry, with an invariant 3 -form flux $H \in \Omega_{c l}^{3}(P)^{S^{1}}$ and an integral $[H] \in H^{3}(P, \mathbb{Z})$, i.e. coming from a gerbe with connection. Then we are going to produce a new "dual" spacetime with "isomorphic quantized field theory" (in this case, a sigma model). Specifically, let \tilde{P} be a new S^{1}-bundle over B so that $c_{1}(\tilde{P})=\pi_{*}(H) \in H^{2}(B, \mathbb{Z})$, and choose $\tilde{H} \in H^{3}(\tilde{P}, Z)$ s.t. $\tilde{\pi}_{*} \tilde{H}=c_{1}(P)$. More specifically, choose a connection $\theta \in \Omega^{1}(P)$ (i.e. $\left.L_{\partial_{\theta}} \theta=0, i_{\partial_{\theta}}=1 / 2 \pi\right)$ so $d \theta=F \in \Omega^{2}(B)$ is integral and $[F]=c_{1}(P)$. Then $H=\tilde{F} \wedge \theta+h$ for some $\tilde{F} \in \Omega^{2}(B)$ integral and $H \in \Omega_{\tilde{P}}^{3}(B)$. Now, $[\tilde{F}] \in H^{2}(B, \mathbb{Z})$ defines a new principal S^{1}-bundle \tilde{P}. Choose a connection $\tilde{\theta}$ on \tilde{P} so that $d \tilde{\theta}=\tilde{F}$. Then define $\tilde{H}=F \wedge \tilde{\theta}+h$, so tat $\int \tilde{H}=F$ and $\int H=\tilde{F}$.

Example. Let $S^{1} \times S^{2} \rightarrow S^{2}$ be the trivial S^{1}-bundle, with $H=v_{1} \wedge v_{2}$. Then $v_{2}=\int_{S^{1}} H=c_{1}\left(S^{3} \rightarrow S^{2}\right)$, so the T-dual is the pair $S^{3}, 0$. Our original space has trivial topology and nontrivial flux, while the new space has nontrivial topology and trivial flux.
Remark. In physics, T-dual spaces have the same quantum physics, hence the same D-branes and twisted K-theory.
Theorem 14 (BHM). We have an isomorphism $K_{H}^{*}(P) \cong K_{\tilde{H}}^{*+1}(\tilde{P})$.
Next, let $P \times{ }_{B} \tilde{P}_{\tilde{H}}=\{(p, \tilde{p}) \mid \pi(p)=\tilde{\pi}(\tilde{p})\} \subset P \times \tilde{P}$ be the correspondence space, ϕ, ψ the two projections. Then $\phi^{*} H-\psi^{*} \tilde{H}=\tilde{F} \wedge \theta-F \wedge \tilde{\theta}=-d\left(\phi^{*} \theta \wedge \psi^{*} \tilde{\theta}\right)$.
Definition 23. $A T$-duality between S^{1}-bundles (P, H) and (\tilde{P}, \tilde{H}) over B is a 2-form $F \in \Omega^{2}\left(P \times_{B} \tilde{P}\right)^{S^{1} \times S^{1}}$ s.t. $\phi^{*} H-\psi^{*} \tilde{H}=d F$ and F deterines a nondegenerate pairing $\operatorname{Ker} \phi_{*} \times \operatorname{Ker} \psi_{*} \rightarrow \mathbb{R}$.
In fact, T-duality can be expressed, therefore, as an orthogonal isomorphism

$$
\begin{equation*}
\left(T_{p} \oplus T_{p}^{*}, H\right) / S^{1} \rightarrow^{L\left(P \times_{B} \tilde{P}, F\right)}\left(T_{\tilde{P}} \oplus T_{\tilde{P}}^{*}, \tilde{H}\right) / S^{1} \tag{127}
\end{equation*}
$$

though of as bundles over B (or just S^{1}-invariant sections on P, \tilde{P}). This map sends H-twisted bracket to \tilde{H}-twisted bracket, via

$$
\begin{equation*}
\Omega^{*}(P)^{S^{1}} \ni \rho \mapsto \tau(\rho)=\psi_{*} e^{F} \wedge \phi^{*} \rho=\int_{\tilde{S}^{1}} e^{F} \wedge \phi^{*} \rho \in \Omega^{*}(\tilde{P})^{S^{1}} \tag{128}
\end{equation*}
$$

Since $d\left(e^{F} \rho\right)=e^{F}(d \rho+(H-\tilde{H}) \rho)$, we find that $d_{\tilde{H}}\left(e^{F} \rho\right)=e^{F} d_{H} \rho$ and $\tau\left(d_{H} \rho\right)=d_{\tilde{H}} \tau(\rho)$ as desired.
Overall, a T-duality $F:(P, H) \rightarrow(\tilde{P}, \tilde{H})$ implies an isomorphism
$\left(T_{p} \oplus T_{p}^{*}, H\right) / S^{1} \rightarrow^{L\left(P \times_{B} \tilde{P}, F\right)}\left(T_{\tilde{P}} \oplus T_{\tilde{P}}^{*}, \tilde{H}\right) / S^{1}$ as Courant algebroid, and thus any S^{1}-invariant generalized structure may be transported from (P, H) to (\tilde{P}, \tilde{H}).
Example. 1. $T_{P}^{*} \subset\left(T_{p} \oplus T_{p}^{*}, H\right)$ is a Dirac structure $\Longrightarrow T$-dual is

$$
\begin{equation*}
\tau(\xi+\theta)=\xi-\tilde{\partial}_{\theta}=T^{*} B+\left\langle\partial_{\tilde{\theta}}\right\rangle=\Delta \oplus \text { Ann } \Delta \tag{129}
\end{equation*}
$$

for $\delta=\left\langle\partial_{\tilde{\theta}}\right\rangle$
2. The induced map on twisted cohomology $H_{H}^{*}(P) \rightleftarrows H_{\tilde{H}}^{*+1}(\tilde{P})$ is an isomorphism.
3. Where does τ take the subspace $C_{+}=\Gamma_{g+b} \subset T^{*} \oplus T$? In $T P=T B \oplus 1$, decompose $g=g_{0} \theta \odot \theta+g_{1} \odot \theta+g_{2}, b=b_{1} \wedge \theta+b_{2}$ for g_{i}, b_{i} basic. Then

$$
\begin{equation*}
C_{+}=\Gamma_{g+b}=\left\langle x+f \partial_{\theta}+\left(i_{x} g_{2}+f g_{1}+i_{x} b_{2}-f b_{1}\right)+\left(g_{1}(x)+f g_{0}+b_{1}(x)\right) \theta\right\rangle \tag{130}
\end{equation*}
$$

which is mapped via τ to

$$
\begin{equation*}
\Gamma_{\tilde{g}+\tilde{b}}=\left\langle x+\left(g_{1}(x)+f g_{0}+b_{1}(x)\right) \partial_{\tilde{\theta}}+\left(i_{x} g_{1}+f g_{1}+i_{x} b_{2}-f b_{1}\right)+f \tilde{\theta}\right\rangle \tag{131}
\end{equation*}
$$

where

$$
\left\{\begin{array}{l}
\tilde{g}=\frac{1}{g_{0}} \tilde{\theta} \odot \tilde{\theta}-\frac{b_{1}}{g_{0}} \odot \tilde{\theta}+g_{2}+\frac{1}{g_{0}}\left(b_{1} \odot b_{1}-g_{1} \odot g_{1}\right) \tag{132}\\
\tilde{b}=\frac{g_{1}}{g_{0}} \wedge \tilde{\theta}+b_{2}+\frac{g_{1} \wedge b_{1}}{g_{0}}
\end{array}\right.
$$

These are called "Buscher rules".
4. Elliptic Curves:

