13 Lecture 18 (Notes: K. Venkatram)

13.1 Generalized K ahler Geometry

Let $\left(\mathbb{J}_{A}, \mathbb{J}_{B}\right)$ be a generalized K ahler structure: then $G=-\mathbb{J}_{A} \mathbb{J}_{B}$ is a generalized metric, and taking the decomposition $T \oplus T^{*}=C_{+} \oplus C_{-}, C_{ \pm}=\Gamma_{ \pm g}$ gives $\left.\mathbb{J}_{A}\right|_{C_{+}}=\left.\mathbb{J}_{B}\right|_{C_{+}},\left.\mathbb{J}_{A}\right|_{C_{-}}=-\left.\mathbb{J}_{B}\right|_{C_{-}}$. Thus, we obtain two complex structures J_{+}, J_{-}on T by transport, i.e. $J_{+} X=\pi \mathbb{J}_{A} X^{+}$and $J_{-} X=\pi \mathbb{J}_{A} X^{-}$. Since \mathbb{J}_{A} is compatible with G, this implies that $\left(J_{+}, g\right),\left(J_{-}, g\right)$ are almost Hermitian. Further, given the splitting of the Courant algebroid, $\mathbb{J}_{A}, \mathbb{J}_{B}$ can be reconstructed from $\left(g, J_{+}, J_{-}\right)$by

$$
\begin{align*}
& \mathbb{J}_{A}=\left.J_{+}\right|_{C_{+}}+\left.J_{-}\right|_{C_{-}} \tag{97}\\
& \mathbb{J}_{B}=\left.J_{+}\right|_{C_{+}}-\left.J_{-}\right|_{C_{-}}
\end{align*}
$$

thus giving the formula

$$
\mathbb{J}_{A / B}=\frac{1}{2}\left(\begin{array}{cc}
J_{+} \pm J_{-} & -\left(\omega_{+}^{-1} \mp \omega_{-}^{-1}\right) \tag{98}\\
\omega_{+} \mp \omega_{-} & -\left(J_{+}^{*} \pm J_{-}^{*}\right)
\end{array}\right)
$$

13.1.1 Integrability

As shown earlier, the integrability of $\left(\mathbb{J}_{A}, \mathbb{J}_{B}\right)$ is equivalent to the Courant involutivity of L_{A}, L_{B}. Specifically, note that

$$
\begin{align*}
\left(T \oplus T^{*}\right) \otimes \mathbb{C}=L_{A} \oplus \bar{L}_{A}=L_{B} \oplus \bar{L}_{B} & =\left(L_{A} \cap L_{B}\right) \oplus\left(L_{A} \cap \bar{L}_{B}\right) \oplus\left(\bar{L}_{A} \cap L_{B}\right) \oplus\left(\bar{L}_{A} \cap \bar{L}_{B}\right) \\
& =L_{+} \oplus L_{-} \oplus \bar{L}_{-} \oplus \bar{L}_{+} \tag{99}
\end{align*}
$$

Thus, the complex structures on $C_{ \pm}$, and thus on T, are described by the decompositions $C_{+} \otimes \mathbb{C}=L_{+} \oplus \bar{L}_{+}, C_{-} \otimes \mathbb{C}=L_{-} \oplus \bar{L}_{-}$, and the dimensions of the four spaces on the rhs are the same. Finally, since $T_{1,0}^{+}=+i$ for $J_{+}=L_{+}$(and similarly, $T_{1,0}^{-}=L_{-}$), we have integrability $\Leftrightarrow L_{A}, L_{B}$ are involutive $\Longrightarrow L_{ \pm}$is involutive. The latter impliciation is in fact an iff:

Proposition 8. $L_{ \pm}$involutive $\Longrightarrow L_{+} \oplus L_{-}, L_{+} \oplus \overline{L_{-}}$involutive.
Proof. Using the fact that

$$
\begin{equation*}
\langle[a, b], c\rangle \cdot \phi=\left[\left[\left[d_{H}, a\right], b\right], c\right] \cdot \phi=a \cdot b \cdot c \cdot d_{H} \phi \tag{100}
\end{equation*}
$$

for any ϕ pure, $a, b, c \in L_{\phi}$, we find that $\langle[a, b], c\rangle$ defined a tensor in $\bigwedge L_{\phi}^{*}$. Let $a \in L_{+}, b \in L_{-}$be elements. Then, for any $x \in L_{+},\langle[a, b], x\rangle=\langle[x, a], b\rangle=0$. Similarly, for any $x \in L_{-},\langle[a, b], x\rangle=\langle[b, x], a\rangle=0$. Thus, $[a, b] \in L_{+} \oplus L_{-}$.

However, as we saw last time,

$$
\begin{equation*}
L_{ \pm}=\left\{X \pm g X \mid X \in T_{ \pm}^{1,0}\right\}=\left\{X \mp i \omega_{ \pm} X \mid X \in T_{ \pm}^{1,0}\right\} \tag{101}
\end{equation*}
$$

and so $L_{ \pm}$are integrable $\Leftrightarrow T_{ \pm}^{1,0}$ are integrable and $i_{X} i_{Y}\left(H \mp i d \omega_{ \pm}\right)=0 \forall X, Y \in T_{ \pm}^{1,0}$. Using the integrability of $J_{ \pm}$, we can write the latter expression as $i_{X} i_{Y}\left(H \mp i\left(\partial_{ \pm}+\bar{\partial}_{ \pm}\right) \omega_{ \pm}\right)=0 \forall X, Y \in T_{ \pm}^{1,0}$. Since $\bar{\partial}_{ \pm} \omega_{ \pm}$is of type 1,2 , it is killed, and

$$
i_{X} I_{Y}\left(H \pm d_{ \pm}^{c} \omega_{ \pm}\right)=0 \Leftrightarrow H \pm d_{ \pm}^{c} \omega_{ \pm}=0 \Leftrightarrow\left\{\begin{array}{c}
d_{+}^{c} \omega_{+}+d_{-}^{c} \omega_{-}=0 \tag{102}\\
d_{+}^{c} \omega_{+}=-H
\end{array}\right.
$$

Finally, we obtain the following result.

Theorem 12. Generalized K ahler structures on the exact Courant algebroid $E \rightarrow M$, modulo non-closed B-field transforms (choice of splitting) are equivalent to bi-Hermitian structures $\left(g, J_{+}, J_{-}\right)$s.t. $d_{+}^{c} \omega_{+}+d_{-}^{c} \omega_{-}=0, d d_{+}^{c} \omega_{+}=0$, and $\left[d_{+}^{c} \omega_{+}\right]=[E] \in H^{3}(M, \mathbb{R})$.

Remark. This geometry was first described by Gates, Hull, Roček as the most general geomtry on the target of a 2-dimensional sigma model constrained to have $N=(2,2)$ supersymmetry. Note that the special identities giving a (p, q) decomposition of $H_{H}^{*}(M, \mathbb{C})$ are a consequence of the special identities required by SUSY. However, they are only clear when viewed in terms of $\left(\mathbb{J}_{A}, \mathbb{J}_{B}\right)$ rather than $J_{ \pm}$.
We can use this theorem to construct several new examples of generalized K ahler and generalized complex structures.

Example. Let G be an even-dimensional, compact, semisimple group, and choose an even-dimensional Cartan subalgebra $\mathfrak{h} \subset \mathfrak{g} \otimes \mathbb{C}$. The root system splits into \pm re roots, giving a decomposition $\mathfrak{g} \otimes \mathbb{C}=\tau \oplus \bar{\tau}$ which is closed onder the Lie bracket. Thus, by left or right translating, we get an integrable complex structure on G, and since the root spaces are killing-orthogonal, we have a bi-Hermitian structure $\left(g, J_{L}, J_{R}\right)$, with g the killing form. Now, recall the Cartan 3-form $H(X, Y, Z)=g([X, Y], Z)$ and notice that

$$
\begin{align*}
A & =d_{L}^{c} \omega_{L}(X, Y, Z)=d \omega_{L}\left(J_{L} X, J_{L} Y, J_{L} Z\right)=-\omega_{L}\left(\left[J_{L} X, J_{L} Y\right], J_{L} Z\right)+\text { c.p. } \\
& =-g\left(J_{L}\left[J_{L} X, Y\right]+J_{L}\left[X, J_{L} Y\right]+[X, Y], Z\right)+\text { c.p. } \tag{103}\\
& =\left(2 g\left(\left[J_{L} X, J_{L} Y\right], Z\right)+\text { c.p. }\right)-3 H(X, Y, Z)=-2 A-3 H
\end{align*}
$$

Thus, $d_{L}^{c} \omega_{L}=-H$; since the right Lie algebra is anti-isomorphic to the left, $d_{R}^{c} \omega_{R}=H$, and $\left(G, g, J_{L}, J_{R}\right)$ is a generalized K ahler structure unique w.r.t. $H_{\text {cartan }}$. Finally, we obtain the generalized complex structures

$$
\mathbb{J}_{A / B}=\left(\begin{array}{cc}
J_{L} \pm J_{R} & -\left(\omega_{L}^{-1} \mp \omega_{R}^{-1}\right) \tag{104}\\
\omega_{L} \mp \omega_{R} & -\left(J_{L}^{*} \pm J_{R}^{*}\right)
\end{array}\right)
$$

on G.
What are their types? Since $\omega_{L}=g J_{L}, \omega_{R}=g J_{R}$,

$$
\begin{align*}
-\left(\omega_{L}^{-1} \mp \omega_{R}^{-1}\right) & =\left(J_{L} \mp J_{R}\right) g^{-1} \tag{105}\\
J_{L} \pm J_{R} & =R_{g *}\left(R_{g^{-1} *} L_{g *} J \pm J R_{g^{-1} *} L_{g *}\right) L_{g^{-1} *}
\end{align*}
$$

Thus, the rank of $\left(\mathbb{J}_{A}, \mathbb{J}_{B}\right)$ at g is simply $\left(\operatorname{rk}\left[J, \operatorname{Ad}_{g}\right], \operatorname{rk}\left\{J, \operatorname{Ad}{ }_{g}\right\}\right)$.
Problem. Describe the symplectic leaves of $\left(\mathbb{J}_{A}, \mathbb{J}_{B}\right)$ for $G=S U(3)$.
In the simplest case, $Q=\left[J_{+}, J_{-}\right] g^{-1}=0$, so that type $A+$ type $B=n \Longrightarrow$ constant types. As earlier, since $\left[J_{+}, J_{-}\right]=0$, we have a decomposition $T \otimes \mathbb{C}=A \oplus B \oplus \bar{A} \oplus \bar{B}$, with $A=T_{1,0}^{+} \cap T_{1,0}^{-}, B=T_{1,0}^{+} \cap T_{0,1}^{-}$.
Note that A, B are integrable since $T_{1,0}^{+}, T_{1,0}^{-}$are. Also, note that
$A \oplus \bar{A}=\operatorname{Ker}\left(J_{+}-J_{-}\right)=\operatorname{Im}\left(J_{+}+J_{-}\right)=\operatorname{Im} \pi_{A}$ is integrable, as is $B \oplus \bar{B}$.
Proposition 9. A, B are holomorphic subbundles of $T_{1,0}^{+}$.
Proof. Define $\bar{\partial}_{X^{0,1}} Z^{1,0}=[X, Z]^{1,0}$. For $Z \in C^{\infty}(A), X=X_{\bar{A}}+X_{\bar{B}},[X, Z]^{1,0}=[X, Z]^{A}+[X, Z]^{B}$, with the latter term being zero since $\left[X_{\bar{A}}, Z\right]$ is still in $A \oplus \bar{A}$ and $\left[X_{\bar{B}}, Z\right]$ is in the integrable space $A \oplus \bar{B}$. Thus, A (and similarly B) give $J_{ \pm}$holomorphic splittings of $T M$.

