13 Lecture 18 (Notes: K. Venkatram)

13.1 Generalized K ahler Geometry

Let $(\mathbb{J}_A, \mathbb{J}_B)$ be a generalized K ahler structure: then $G = -\mathbb{J}_A\mathbb{J}_B$ is a generalized metric, and taking the decomposition $T \oplus T^* = C_+ \oplus C_-, C_\pm = \Gamma_{\pm g}$ gives $\mathbb{J}_A|_{C_+} = \mathbb{J}_B|_{C_+}, \mathbb{J}_A|_{C_-} = -\mathbb{J}_B|_{C_-}$. Thus, we obtain two complex structures J_+, J_- on T by transport, i.e. $J_+X = \pi \mathbb{J}_A X^+$ and $J_-X = \pi \mathbb{J}_A X^-$. Since \mathbb{J}_A is compatible with G, this implies that $(J_+, g), (J_-, g)$ are almost Hermitian. Further, given the splitting of the Courant algebroid, $\mathbb{J}_A, \mathbb{J}_B$ can be reconstructed from (g, J_+, J_-) by

thus giving the formula

$$\mathbb{J}_{A/B} = \frac{1}{2} \begin{pmatrix} J_{+} \pm J_{-} & -(\omega_{+}^{-1} \mp \omega_{-}^{-1}) \\ \omega_{+} \mp \omega_{-} & -(J_{+}^{*} \pm J_{-}^{*}) \end{pmatrix}$$
(98)

13.1.1 Integrability

As shown earlier, the integrability of $(\mathbb{J}_A, \mathbb{J}_B)$ is equivalent to the Courant involutivity of L_A, L_B . Specifically, note that

$$(T \oplus T^*) \otimes \mathbb{C} = L_A \oplus \overline{L}_A = L_B \oplus \overline{L}_B = (L_A \cap L_B) \oplus (L_A \cap \overline{L}_B) \oplus (\overline{L}_A \cap L_B) \oplus (\overline{L}_A \cap \overline{L}_B)$$

$$= L_+ \oplus L_- \oplus \overline{L}_- \oplus \overline{L}_+$$
(99)

Thus, the complex structures on C_{\pm} , and thus on T, are described by the decompositions $C_+ \otimes \mathbb{C} = L_+ \oplus \overline{L}_+, C_- \otimes \mathbb{C} = L_- \oplus \overline{L}_-$, and the dimensions of the four spaces on the rhs are the same. Finally, since $T_{1,0}^+ = +i$ for $J_+ = L_+$ (and similarly, $\overline{T_{1,0}} = L_-$), we have integrability $\Leftrightarrow L_A, L_B$ are involutive $\Longrightarrow L_{\pm}$ is involutive. The latter implication is in fact an iff:

Proposition 8. L_{\pm} involutive $\implies L_{+} \oplus L_{-}, L_{+} \oplus \overline{L_{-}}$ involutive.

Proof. Using the fact that

$$\langle [a,b],c\rangle \cdot \phi = [[[d_H,a],b],c] \cdot \phi = a \cdot b \cdot c \cdot d_H \phi$$
(100)

for any ϕ pure, $a, b, c \in L_{\phi}$, we find that $\langle [a, b], c \rangle$ defined a tensor in $\bigwedge L_{\phi}^*$. Let $a \in L_+, b \in L_-$ be elements. Then, for any $x \in L_+$, $\langle [a, b], x \rangle = \langle [x, a], b \rangle = 0$. Similarly, for any $x \in L_-$, $\langle [a, b], x \rangle = \langle [b, x], a \rangle = 0$. Thus, $[a, b] \in L_+ \oplus L_-$.

However, as we saw last time,

$$L_{\pm} = \{ X \pm gX | X \in T_{\pm}^{1,0} \} = \{ X \mp i\omega_{\pm}X | X \in T_{\pm}^{1,0} \}$$
(101)

and so L_{\pm} are integrable $\Leftrightarrow T_{\pm}^{1,0}$ are integrable and $i_X i_Y (H \mp i d\omega_{\pm}) = 0 \forall X, Y \in T_{\pm}^{1,0}$. Using the integrability of J_{\pm} , we can write the latter expression as $i_X i_Y (H \mp i (\partial_{\pm} + \overline{\partial}_{\pm}) \omega_{\pm}) = 0 \forall X, Y \in T_{\pm}^{1,0}$. Since $\overline{\partial}_{\pm} \omega_{\pm}$ is of type 1, 2, it is killed, and

$$i_X I_Y (H \pm d_{\pm}^c \omega_{\pm}) = 0 \Leftrightarrow H \pm d_{\pm}^c \omega_{\pm} = 0 \Leftrightarrow \begin{cases} d_+^c \omega_+ + d_-^c \omega_- = 0 \\ d_+^c \omega_+ = -H \end{cases}$$
(102)

Finally, we obtain the following result.

Theorem 12. Generalized K ahler structures on the exact Courant algebroid $E \to M$, modulo non-closed B-field transforms (choice of splitting) are equivalent to bi-Hermitian structures (g, J_+, J_-) s.t. $d_+^c \omega_+ + d_-^c \omega_- = 0, dd_+^c \omega_+ = 0, and [d_+^c \omega_+] = [E] \in H^3(M, \mathbb{R}).$

Remark. This geometry was first described by Gates, Hull, Roček as the most general geomtry on the target of a 2-dimensional sigma model constrained to have N = (2, 2) supersymmetry. Note that the special identities giving a (p, q) decomposition of $H^*_H(M, \mathbb{C})$ are a consequence of the special identities required by SUSY. However, they are only clear when viewed in terms of $(\mathbb{J}_A, \mathbb{J}_B)$ rather than J_{\pm} .

We can use this theorem to construct several new examples of generalized K ahler and generalized complex structures.

Example. Let G be an even-dimensional, compact, semisimple group, and choose an even-dimensional Cartan subalgebra $\mathfrak{h} \subset \mathfrak{g} \otimes \mathbb{C}$. The root system splits into $\pm re$ roots, giving a decomposition $\mathfrak{g} \otimes \mathbb{C} = \tau \oplus \overline{\tau}$ which is closed onder the Lie bracket. Thus, by left or right translating, we get an integrable complex structure on G, and since the root spaces are killing-orthogonal, we have a bi-Hermitian structure (g, J_L, J_R) , with g the killing form. Now, recall the Cartan 3-form H(X, Y, Z) = g([X, Y], Z) and notice that

$$A = d_L^c \omega_L(X, Y, Z) = d\omega_L(J_L X, J_L Y, J_L Z) = -\omega_L([J_L X, J_L Y], J_L Z) + c.p.$$

= $-g(J_L[J_L X, Y] + J_L[X, J_L Y] + [X, Y], Z) + c.p.$ (103)
= $(2g([J_L X, J_L Y], Z) + c.p.) - 3H(X, Y, Z) = -2A - 3H$

Thus, $d_L^c \omega_L = -H$; since the right Lie algebra is anti-isomorphic to the left, $d_R^c \omega_R = H$, and (G, g, J_L, J_R) is a generalized K ahler structure unique w.r.t. H_{cartan} . Finally, we obtain the generalized complex structures

$$\mathbb{J}_{A/B} = \begin{pmatrix} J_L \pm J_R & -(\omega_L^{-1} \mp \omega_R^{-1}) \\ \omega_L \mp \omega_R & -(J_L^* \pm J_R^*) \end{pmatrix}$$
(104)

on G.

What are their types? Since $\omega_L = gJ_L, \omega_R = gJ_R$,

$$-(\omega_L^{-1} \mp \omega_R^{-1}) = (J_L \mp J_R)g^{-1}$$

$$J_L \pm J_R = R_{g*}(R_{g^{-1}*}L_{g*}J \pm JR_{q^{-1}*}L_{g*})L_{q^{-1}*}$$
(105)

Thus, the rank of $(\mathbb{J}_A, \mathbb{J}_B)$ at g is simply $(\operatorname{rk}[J, \operatorname{Ad}_q], \operatorname{rk}\{J, \operatorname{Ad}_q\})$.

Problem. Describe the symplectic leaves of $(\mathbb{J}_A, \mathbb{J}_B)$ for G = SU(3).

In the simplest case, $Q = [J_+, J_-]g^{-1} = 0$, so that type $A + \text{type } B = n \implies \text{constant types.}$ As earlier, since $[J_+, J_-] = 0$, we have a decomposition $T \otimes \mathbb{C} = A \oplus B \oplus \overline{A} \oplus \overline{B}$, with $A = T_{1,0}^+ \cap T_{1,0}^-$, $B = T_{1,0}^+ \cap T_{0,1}^-$. Note that A, B are integrable since $T_{1,0}^+, T_{1,0}^-$ are. Also, note that $A \oplus \overline{A} = \text{Ker } (J_+ - J_-) = \text{Im } (J_+ + J_-) = \text{Im } \pi_A$ is integrable, as is $B \oplus \overline{B}$.

Proposition 9. A, B are holomorphic subbundles of $T_{1,0}^+$.

Proof. Define $\overline{\partial}_{X^{0,1}}Z^{1,0} = [X, Z]^{1,0}$. For $Z \in C^{\infty}(A), X = X_{\overline{A}} + X_{\overline{B}}, [X, Z]^{1,0} = [X, Z]^A + [X, Z]^B$, with the latter term being zero since $[X_{\overline{A}}, Z]$ is still in $A \oplus \overline{A}$ and $[X_{\overline{B}}, Z]$ is in the integrable space $A \oplus \overline{B}$. Thus, A (and similarly B) give J_{\pm} holomorphic splittings of TM.