11 Lecture 11(Notes: K. Venkatram)

11.1 Integrability and spinors

Given $L \subset T \oplus T^{*}$ maximal isotropic, we get a filtration $0 \subset K_{L}=F^{0} \subset F^{1} \subset \cdots \subset F^{n}=\Omega^{*}(M)$ via $F^{k}=\left\{\psi: \bigwedge^{k+1} L \cdot \psi=0\right\}$. Furthermore, for $\phi \in K_{L}$, we have

$$
\begin{equation*}
X_{1} X_{2} d \phi=\left[\left[d, X_{1}\right], X_{2}\right] \phi=\left[X_{1}, X_{2}\right] \phi \tag{21}
\end{equation*}
$$

for all $X_{1}, X_{2} \in L$ (where $d=d_{H}$). Thus, in general, $d \phi \in F^{3}$, and L is involutive $\Leftrightarrow d \phi \in F^{1}$. Now, assume $d\left(F^{i}\right) \subset F^{i+3}$ (and in F^{i+1} if L is integrable) $\forall i<k$ and $\psi \in F^{k}$. Then

$$
\begin{align*}
{\left[X_{1}, X_{2}\right] \psi } & =\left[\left[d, X_{1}\right], X_{2}\right] \psi=d X_{1} X_{2} \psi+X_{1} d X_{2} \psi-X_{2} d X_{1} \psi-X_{2} X_{1} d \psi \\
X_{1} X_{2} d \psi & =-d X_{1} X_{2} \psi-X_{1} d X_{2} \psi+X_{2} d X_{1} \psi+\left[X_{1}, X_{2}\right] \psi \tag{22}
\end{align*}
$$

Note that, in the latter expression, each of the parts on the RHS have degree $(k-1)+2=k+1$, so $d \psi \in F^{k+1}$ if L is integrable and F^{k+3} otherwise.
Next, suppose that the Courant algebroid E has a decomposition $L \oplus L^{\prime}$ into transverse Dirac structures.

1. Linear algebra:

- $L^{\prime} \cong L^{*}$ via $\langle\cdot, \cdot\rangle$.
- The filtration $K_{L}=F^{0} \subset F^{1} \subset \cdots \subset F^{n}$ of spinors becomes a \mathbb{Z}-grading $K_{L} \oplus\left(L^{\prime} \cdot K_{L}\right) \oplus \cdots \oplus\left(\bigwedge^{k} L^{\prime} \cdot K_{L}\right) \oplus \cdots \oplus\left(\operatorname{det} L^{\prime} \cdot K_{L}\right)$, i.e. $\bigoplus\left(\bigwedge^{k} L^{*}\right) K_{L}$.
Remark. Note that $L^{\prime} \cdot\left(\operatorname{det} L^{\prime} \cdot K_{L}\right)=0$, so $\operatorname{det} L^{\prime} \cdot K_{L}=\operatorname{det} L^{*} \otimes K_{L}=K_{L^{\prime}}$.
Thus, we have a \mathbb{Z} grading $S=\bigoplus_{k=0}^{n} \mathcal{U}_{k}$.
- If the Mukai pairing is nondegenerate on pure spinors, then $K_{L} \otimes K_{L^{\prime}}=\operatorname{det} T^{*}$.

2. Differential structure: via the above grading, we have $F^{k}(L)=\bigoplus_{i=0}^{k} \mathcal{U}_{i}, F^{k}\left(L^{\prime}\right)=\bigoplus_{i=0}^{k} \mathcal{U}_{n-i}$, so $d\left(\mathcal{U}_{k}\right)=d\left(F^{k}(L) \cap F^{n-k}\left(L^{\prime}\right)\right.$. By parity, $d \mathcal{U}_{k} \cap \mathcal{U}_{k}=0$, so a priori

$$
\begin{equation*}
d=\left(\pi_{k-3}+\pi_{k-1}+\pi_{k+1}+\pi_{k+3}\right) \circ d=T^{\prime}+\partial^{\prime}+\partial+T \tag{23}
\end{equation*}
$$

Problem. Show that $T^{\prime}: \mathcal{U}_{k} \rightarrow \mathcal{U}_{k-3}, T: \mathcal{U}_{k} \rightarrow \mathcal{U}_{k+3}$ are given by the Clifford action of tensors $T^{\prime} \in \bigwedge^{3} L, T \in \bigwedge^{3} L^{*}$.

Remark. This splitting of $d=d_{H}$ can be used to understand the splitting of the Courant structure on $L \oplus L^{*}$. Specifically, $d^{2}=0 \Longrightarrow$

$$
\begin{array}{cc}
-4 & T^{\prime} \partial^{\prime}+\partial^{\prime} T^{\prime}=0 \\
-2 & \left(\partial^{\prime}\right)^{2}+T^{\prime} \partial+\partial T^{\prime} \\
0 & \partial \partial^{\prime}+\partial^{\prime} \partial+T T^{\prime}+T^{\prime} T \tag{24}\\
2 & \partial^{2}+T \partial^{\prime}+\partial^{\prime} T \\
4 & T \partial+\partial T=0
\end{array}
$$

11.2 Lie Bialgebroids and deformations

We can express the whole Courant structure in terms of $\left(L, L^{*}\right)$. Assume for simplicity that L, L^{*} are both integrable, so $T=T^{\prime}=0$. Then

1. Anchor $\pi \rightarrow$ a pair of anchors $\pi: L \rightarrow T, \pi^{\prime}: L^{\prime} \rightarrow T$.
2. An inner product \rightarrow a pairing $L^{\prime}=L^{*},\langle X+\xi, X+\xi\rangle=\xi(X)$.
3. A bracket \rightarrow a bracket [,] on $L,[,]_{*}$ on L^{*}. Specifically, for $x, y \in L, \phi \in \mathcal{U}_{0}$,

$$
\begin{equation*}
[x, y] \phi=[[d, x], y] \phi=x y d \phi=x y(\partial+T) \phi=x y T \phi=\left(i_{x} i_{y} T\right) \phi \tag{25}
\end{equation*}
$$

The induced action on S is $d_{L} \alpha=[\partial, \alpha]$, giving us an action of L on L^{*} as $\pi_{L^{*}}[x, \xi]$ for $x \in L, \xi \in L^{*}$.
Expanding, we have

$$
\begin{align*}
{[x, \xi] \phi } & =[[\partial, x], \xi] \phi=\partial x \xi \phi+x \partial \xi \phi-\xi x \partial \phi-\left(i_{x} \xi\right) \partial \phi \tag{26}\\
& =\partial\left(i_{x} \xi\right) \phi+x\left(d_{L} \xi\right) \phi-\left(i_{x} \xi\right) \partial \phi=\left(d_{L} i_{x} \xi+i_{x} d_{L} \xi\right) \phi=\left(L_{x} \xi\right) \phi
\end{align*}
$$

If $T=0$, then $x \rightarrow L_{x}$ is an action (guaranteed by the Jacobi identity of the Courant algebroid). If L, L^{\prime} are integrable,

$$
\begin{equation*}
L_{x}[\xi, \eta]_{*}=\pi_{L^{*}}[x,[\xi, \eta]]=\pi_{L^{*}}([[x, \xi], \eta]+[\xi,[x, \eta]]) \tag{27}
\end{equation*}
$$

Problem. This implies that $d[\cdot, \cdot]_{*}=[d \cdot, \cdot]_{*}+[\cdot, d \cdot]_{*}$.
As a result of these computations, we find that, for $X, Y \in L, \xi, \eta \in L^{*}$,

$$
\begin{align*}
{[X+\xi, Y+\eta] } & =[X, Y]+[X, \eta]_{L}+[\xi, Y]_{L}+[\xi, \eta]+[\xi, Y]_{L^{*}}+[X, \eta]_{L^{*}} \tag{28}\\
& =[X, Y]+L_{\xi} Y-i_{\eta} d_{*} X+[\xi, \eta]+L_{X} \eta-i_{Y} d \xi
\end{align*}
$$

There are no H terms since we assumed $T=T^{\prime}=0$. Overall, we have obtained a correspondence between transverse Dirac structures $\left(L, L^{\prime}\right)$ and Lie bialgebroids $\left(L, L^{*}\right)$ with actions and brackets $L \rightarrow T, L^{*} \rightarrow T$ s.t. d is a derivation of $[,]_{*}$.

Finally, we can deform the Dirac structure in pairs. Specifically, for $\epsilon \in C^{\infty}\left(\bigwedge^{2} L^{*}\right)$ a small B-transform, $e^{\epsilon}(L)=L_{\epsilon}$, one can ask when L_{ϵ} is integrable. We claim that this happens $\Leftrightarrow d_{L} \epsilon+\frac{1}{2}[\epsilon, \epsilon]_{*}=0$. To see this, note that

$$
\begin{align*}
\left\langle\left[e^{\epsilon} x, e^{\epsilon} y\right], e^{\epsilon} z\right\rangle & =\left\langle\left[e^{\epsilon} x, e^{\epsilon} y\right]_{L}, e^{\epsilon} z\right\rangle+\left\langle\left[e^{\epsilon} x, e^{\epsilon} y\right]_{L^{*}}, e^{\epsilon} z\right\rangle \\
& =\left(d_{L} \epsilon\right)(x, y, z)+\frac{1}{2}[\epsilon, \epsilon]_{*}(x, y, z) \tag{29}
\end{align*}
$$

via an analogous computation to that of $e^{B} T$ and $e^{\pi} T^{*}$ from before.

