11 Lecture 11(Notes: K. Venkatram)

11.1 Integrability and spinors

Given $L \subset T \oplus T^*$ maximal isotropic, we get a filtration $0 \subset K_L = F^0 \subset F^1 \subset \cdots \subset F^n = \Omega^*(M)$ via $F^k = \{\psi : \bigwedge^{k+1} L \cdot \psi = 0\}$. Furthermore, for $\phi \in K_L$, we have

$$X_1 X_2 d\phi = [[d, X_1], X_2]\phi = [X_1, X_2]\phi$$
(21)

for all $X_1, X_2 \in L$ (where $d = d_H$). Thus, in general, $d\phi \in F^3$, and L is *involutive* $\Leftrightarrow d\phi \in F^1$. Now, assume $d(F^i) \subset F^{i+3}$ (and in F^{i+1} if L is integrable) $\forall i < k$ and $\psi \in F^k$. Then

$$[X_1, X_2]\psi = [[d, X_1], X_2]\psi = dX_1X_2\psi + X_1dX_2\psi - X_2dX_1\psi - X_2X_1d\psi X_1X_2d\psi = -dX_1X_2\psi - X_1dX_2\psi + X_2dX_1\psi + [X_1, X_2]\psi$$

$$(22)$$

Note that, in the latter expression, each of the parts on the RHS have degree (k-1) + 2 = k + 1, so $d\psi \in F^{k+1}$ if L is integrable and F^{k+3} otherwise.

Next, suppose that the Courant algebroid E has a decomposition $L \oplus L'$ into transverse Dirac structures.

- 1. Linear algebra:
 - $L' \cong L^*$ via $\langle \cdot, \cdot \rangle$.
 - The filtration $K_L = F^0 \subset F^1 \subset \cdots \subset F^n$ of spinors becomes a \mathbb{Z} -grading $K_L \oplus (L' \cdot K_L) \oplus \cdots \oplus (\bigwedge^k L' \cdot K_L) \oplus \cdots \oplus (\det L' \cdot K_L)$, i.e. $\bigoplus (\bigwedge^k L^*) K_L$.

Remark. Note that $L' \cdot (\det L' \cdot K_L) = 0$, so det $L' \cdot K_L = \det L^* \otimes K_L = K_{L'}$.

Thus, we have a \mathbb{Z} grading $S = \bigoplus_{k=0}^{n} \mathcal{U}_k$.

• If the Mukai pairing is nondegenerate on pure spinors, then $K_L \otimes K_{L'} = \det T^*$.

Continued on next page ...

2. Differential structure: via the above grading, we have $F^k(L) = \bigoplus_{i=0}^k \mathcal{U}_i, F^k(L') = \bigoplus_{i=0}^k \mathcal{U}_{n-i}$, so $d(\mathcal{U}_k) = d(F^k(L) \cap F^{n-k}(L'))$. By parity, $d\mathcal{U}_k \cap \mathcal{U}_k = 0$, so a priori

$$d = (\pi_{k-3} + \pi_{k-1} + \pi_{k+1} + \pi_{k+3}) \circ d = T' + \partial' + \partial + T$$
(23)

Problem. Show that $T': \mathcal{U}_k \to \mathcal{U}_{k-3}, T: \mathcal{U}_k \to \mathcal{U}_{k+3}$ are given by the Clifford action of tensors $T' \in \bigwedge^3 L, T \in \bigwedge^3 L^*$.

Remark. This splitting of $d = d_H$ can be used to understand the splitting of the Courant structure on $L \oplus L^*$. Specifically, $d^2 = 0 \implies$

$$\begin{array}{ll}
-4 & T'\partial' + \partial'T' = 0 \\
-2 & (\partial')^2 + T'\partial + \partial T' \\
0 & \partial\partial' + \partial'\partial + TT' + T'T \\
2 & \partial^2 + T\partial' + \partial'T \\
4 & T\partial + \partial T = 0
\end{array}$$
(24)

11.2 Lie Bialgebroids and deformations

We can express the whole Courant structure in terms of (L, L^*) . Assume for simplicity that L, L^* are both integrable, so T = T' = 0. Then

- 1. Anchor $\pi \to a$ pair of anchors $\pi : L \to T, \pi' : L' \to T$.
- 2. An inner product \rightarrow a pairing $L' = L^*, \langle X + \xi, X + \xi \rangle = \xi(X).$
- 3. A bracket \rightarrow a bracket [,] on L, [,]* on L*. Specifically, for $x, y \in L, \phi \in \mathcal{U}_0$,

$$[x,y]\phi = [[d,x],y]\phi = xyd\phi = xy(\partial + T)\phi = xyT\phi = (i_x i_y T)\phi$$
(25)

The induced action on S is $d_L \alpha = [\partial, \alpha]$, giving us an action of L on L^* as $\pi_{L^*}[x, \xi]$ for $x \in L, \xi \in L^*$. Expanding, we have

$$[x,\xi]\phi = [[\partial,x],\xi]\phi = \partial x\xi\phi + x\partial\xi\phi - \xi x\partial\phi - (i_x\xi)\partial\phi = \partial(i_x\xi)\phi + x(d_L\xi)\phi - (i_x\xi)\partial\phi = (d_Li_x\xi + i_xd_L\xi)\phi = (L_x\xi)\phi$$
(26)

If T = 0, then $x \to L_x$ is an action (guaranteed by the Jacobi identity of the Courant algebroid). If L, L' are integrable,

$$L_x[\xi,\eta]_* = \pi_{L^*}[x,[\xi,\eta]] = \pi_{L^*}([[x,\xi],\eta] + [\xi,[x,\eta]])$$
(27)

Problem. This implies that $d[\cdot, \cdot]_* = [d \cdot, \cdot]_* + [\cdot, d \cdot]_*$.

As a result of these computations, we find that, for $X, Y \in L, \xi, \eta \in L^*$,

$$[X + \xi, Y + \eta] = [X, Y] + [X, \eta]_L + [\xi, Y]_L + [\xi, \eta] + [\xi, Y]_{L^*} + [X, \eta]_{L^*}$$

= [X, Y] + L_{\xi}Y - i_{\eta}d_*X + [\xi, \eta] + L_X\eta - i_Yd\xi (28)

There are no H terms since we assumed T = T' = 0. Overall, we have obtained a correspondence between transverse Dirac structures (L, L') and Lie bialgebroids (L, L^*) with actions and brackets $L \to T, L^* \to T$ s.t. d is a derivation of $[,]_*$.

Finally, we can deform the Dirac structure in pairs. Specifically, for $\epsilon \in C^{\infty}(\bigwedge^2 L^*)$ a small *B*-transform, $e^{\epsilon}(L) = L_{\epsilon}$, one can ask when L_{ϵ} is integrable. We claim that this happens $\Leftrightarrow d_L \epsilon + \frac{1}{2}[\epsilon, \epsilon]_* = 0$. To see this, note that

$$\langle [e^{\epsilon}x, e^{\epsilon}y], e^{\epsilon}z \rangle = \langle [e^{\epsilon}x, e^{\epsilon}y]_{L}, e^{\epsilon}z \rangle + \langle [e^{\epsilon}x, e^{\epsilon}y]_{L^{*}}, e^{\epsilon}z \rangle$$

$$= (d_{L}\epsilon)(x, y, z) + \frac{1}{2}[\epsilon, \epsilon]_{*}(x, y, z)$$

$$(29)$$

via an analogous computation to that of $e^B T$ and $e^{\pi} T^*$ from before.