10 Lecture 10 (Notes: K. Venkatram)

Last time, we defined an almost Dirac structure on any Lie group G with a bi-invariant metric B by

$$
\begin{equation*}
L_{C}=\left\langle a^{L}-a^{R}+B\left(a^{L}+a^{R}\right) \mid a \in \mathfrak{g}\right\rangle \tag{13}
\end{equation*}
$$

10.1 Integrability

Lemma 2. $d\left(B\left(a^{L}\right)\right)\left(x^{L}, y^{L}\right)=x^{L} B\left(a^{L}, y^{L}\right)-y^{L} B\left(a^{L}, x^{L}\right)-B\left(a^{L},\left[x^{L}, y^{L}\right]\right)=-i_{a^{L}} H\left(x^{L}, y^{L}\right)$, where $H(a, b, c)=B\left(a^{L},\left[b^{L}, c^{L}\right]\right)$.
Problem. Show that $B\left(\theta^{L},\left[\theta^{L}, \theta^{L}\right]\right)\left(a^{L}, b^{L}, c^{L}\right)=6 B\left(a^{L},\left[b^{L}, c^{L}\right]\right)$.
Note also that

$$
\begin{equation*}
d B\left(a^{R}\right)\left(x^{R}, y^{R}\right)=-B\left(a^{R},\left[x^{R}, y^{R}\right]\right)=i_{a^{R}} H\left(x^{R}, y^{R}\right) \tag{14}
\end{equation*}
$$

Now,

$$
\begin{align*}
{\left[a^{L}-a^{R}+B\left(a^{L}+a^{R}\right), b^{L}-b^{R}+B\left(b^{L}+b^{R}\right)\right]_{0} } & =[a, b]^{L}-[a, b]^{R}-i_{b^{L}-b^{R}} d B\left(a^{L}+a^{R}\right)+L_{a^{L}-a^{R}} B\left(b^{L}+b^{R}\right) \\
& =[a, b]^{L}-[a, b]^{R}+i_{b^{L}-b^{R}} i_{a^{L}-a^{R}} H+B\left([a, b]^{L}+[a, b]^{R}\right) \tag{15}
\end{align*}
$$

Corollary 3. L_{C} is involutive under $[,]_{H}$.
Comments about the Cartan-Dirac structure:

1. $a^{L}-a^{R}$ generates the adjoint action so generalized, and $\pi L_{C}=\Delta$ is a foliation by the conjugacy classes.
2. T^{*} component is $B\left(a^{L}+a^{R}\right)$, which spans T^{*} whenever $\mathfrak{g} \rightarrow T_{g}^{*}, a \mapsto a^{L}+a^{R}$ is surjective $\Leftrightarrow\left(\operatorname{ad}_{g}+1\right.$ is invertible. This is true, in particular, for an open set containing $e \in G$.

In this region, $L_{c}=\Gamma_{\beta}$ for an H-twisted Poisson structure.

1. Determine explicitly the bivector β when it is defined.
2. For $G=S U(2)=S^{3}$, describe the conjugacy classes and the locus where $\operatorname{ad}_{g}+1$ is invertible, rank 2 , rank 1 , and rank 0 .
3. Determine the Lie algebroid cohomology $H^{*}\left(L_{c}\right)$. Hint: $\mathfrak{g} \rightarrow L_{c}, a \mapsto a^{L}-a^{R}+B\left(a^{L}+a^{R}\right)$ is bracket-preserving.

10.2 Dirac Maps

A linear map $f: V \rightarrow W$ of vector spaces induces a map $f_{*}: \operatorname{Dir}(V) \rightarrow \operatorname{Dir}(W)$ (the forward Dirac map) given by $f_{*} L_{V}=\left\{f_{*} v+\eta \in W \oplus W^{*} \mid v+f^{*} \eta \in L_{V}\right\}$ and a map $f^{*}: \operatorname{Dir}(W) \rightarrow \operatorname{Dir}(V)$ (the backward Dirac map) given by $f^{*} L_{W}=\left\{v+f^{*} \eta \in V \oplus V^{*} \mid f_{*} v+\eta \in L_{W}\right\}$.

Example.

$\beta \in \Lambda^{2} V$. Then

$$
\begin{align*}
f_{*} \Gamma_{\beta} & =\left\{f_{*} v+\eta \mid v+f^{*} \eta=\beta(\xi)+\xi \forall \xi \in V^{*}\right\}=\left\{f_{*} \beta f^{*} \eta+\eta \mid \eta \in W^{*}\right\} \tag{16}\\
& =\left\{\left(f_{*} \beta\right)(\eta)+\eta\right\}=\Gamma_{f_{*} \beta}
\end{align*}
$$

so f_{*} coincides with the usual pushforward.
$L=L(E, \epsilon), f: E \hookrightarrow V, \epsilon \in \bigwedge^{2} E^{*}$. Then L is precisely $f_{*} \Gamma_{\epsilon}$ via the pushforward $E \oplus E^{*} \rightarrow V \oplus V^{*}$.
In general, $L=L(F, \gamma), F \subset V^{*}, \gamma \in \bigwedge^{2} F^{*}$ is equivalent to specifying
$\left(C=\right.$ Ann $\left.F=L \cap V, \gamma \iota \bigwedge^{2} F^{*}=\bigwedge^{2}(V / L \cap V)=\bigwedge^{2}(V / C)\right)$. Note that $\left(f_{*} L_{V}\right) \cap W=f_{*}\left(L_{V} \cap V\right)$.
Problem. $f_{*} L(C, \gamma)=L\left(f_{*} C, f_{*} \gamma\right)$.
This proves that pushforward commutes properly with composition.

10.3 Manifolds with Courant Structure

Let $\left(M, H_{M}\right),\left(N, H_{N}\right)$ be manifolds equipped with $\left.H \in \Omega^{3}\right)$ cl-structure.
Definition 17. A morphism $\Phi:\left(M, H_{M}\right) \rightarrow\left(N, H_{N}\right)$ is a pair (ϕ, B) for $\phi: M \rightarrow N$ a smooth map and $B \in \Omega^{2}(M)$ s.t. $\phi^{*} H_{N}-H_{M}=d B$, i.e. B gives an isomorphism $\phi^{*} G_{N} \rightarrow G_{M}$.

Now, suppose that $L_{M} \subset T M \oplus T^{*} M, L_{N} \subset T N \oplus T^{*} N$ are Dirac structures.
Definition 18. Φ is a Dirac morphism $\Leftrightarrow \phi_{*} e^{B} L_{M}=L_{N}$.
If L_{M} is transverse to $T^{*} M$, then a Dirac morphism to $\left(N, H_{N}, L_{N}\right)$ is called a Dirac brane for N : this object is important because $\phi^{*} G_{N}$ is trivial.

Example. Let L_{N} be a Dirac structure, and let $M \subset N$ be a leaf of $\Delta=\pi L_{N}$. Then $L_{N}=L\left(\Delta, \epsilon \in \bigwedge^{2} \Delta^{*}\right)$ and so $\epsilon \in \Omega^{2}(M)$. Furthermore, integrability means that $d \epsilon=\left.H\right|_{M}$, hence $(M, \epsilon) \rightarrow(N, H, L)$ is a Dirac brane. So any Dirac manifold is foliated by Dirac branes, and for G, is foliated by conjugacy classes C and 2-forms $\epsilon \in \Omega^{2}(C)$ called $G H J W$
(Guruprasad-Huebschmann-Jeffrey-Weinstein) 2-forms.
Theorem 7. $(m, \tau):\left(G \times G, p_{1}^{*} H+p_{2}^{*} H\right) \rightarrow(G, H)$ is a Dirac morphism from $L_{C} \times L_{C} \rightarrow L_{C}$, i.e. $m_{*} e^{\tau}\left(L_{C} \times L_{C}\right)=L_{C}$.

Proof. Set $\rho(a)=a^{L}-a^{R}, \sigma(a)=B\left(a^{L}+a^{R}\right)$, so $[\rho(a), \rho(b)]=\rho([a, b]),[\rho(a), \sigma(b)]=\sigma([a, b])$, and $d \sigma(a)=-i_{\rho(a)} H$. Then

$$
\begin{equation*}
e^{\tau}\left(L_{C} \times L_{C}\right)=\left\langle(\rho(a), \rho(b)),(\sigma(a), \sigma(b))+i_{\rho(a), \rho(b)} \tau\right\rangle \tag{17}
\end{equation*}
$$

We want to show that this object contains L_{C}, so choose $\left.(X, \xi) \in L_{C}\right|_{g h}, X=\rho(x), \xi=\sigma(x)$. Want to find a, b s.t. $X=m_{*}(\rho(a), \rho(b))$ and $m^{*} \sigma(x)=(\sigma(a), \sigma(b))+i_{\rho(a), \rho(b)} \tau$.

I $\left.m_{*}\right|_{(g, h))}=\left[R_{h *}, L_{g *}\right]$ and

$$
\begin{align*}
m_{*}\binom{\rho(x)_{g}}{\rho(x)_{h}} & =\left(\begin{array}{cc}
R_{h^{*}} & L_{g *}
\end{array}\right)\binom{\left(L_{g *}-R_{g^{*}}\right) x}{\left(L_{h *}-R_{h^{*}}\right) x} \tag{18}\\
& =\left(R_{h^{*}}\left(L_{g *}-R_{g^{*}}\right)+L_{g *}\left(L_{h *}-R_{h^{*}}\right)\right) x=\rho(x)_{g h}
\end{align*}
$$

II Want to show $m^{*} \sigma(x)_{g h}=\left(\sigma(a)_{g}, \sigma(b)_{h}\right)+i_{\rho(a)_{g}, \rho(b)_{h}} \tau$. At $g h$, we have that

$$
\begin{equation*}
m^{*} \sigma(x)\binom{a^{R}}{b^{L}}=\sigma(x)\left(R_{h *} a^{R}+L_{g *} b^{L}\right)=\sigma(x)\left(a^{R}+b^{L}\right)=B\left(x^{L}-x^{R}, a^{R}+b^{L}\right) \tag{19}
\end{equation*}
$$

Then

$$
\begin{equation*}
(\sigma(x), \sigma(x))\binom{a^{R}}{b^{L}}=\sigma(x)_{g}\left(a^{R}\right)+\sigma(x)_{h}\left(b^{L}\right) \tag{20}
\end{equation*}
$$

and the rest follows.

This leads to a fusion operation on Dirac morphisms: given $\Phi_{1}: M_{1} \rightarrow G, \Phi_{2}: M_{2} \rightarrow G$, composing the product with (m, τ) gives $\Phi_{1} \circledast \Phi_{2}: M_{1} \times M_{2} \rightarrow G$.
Example. Given two copies of the map $m: G \times G \rightarrow G$, obtain $m \circledast m: G^{4} \rightarrow G$: more generally, get Dirac morphisms $M^{\circledast h}: G^{2 h} \rightarrow G$. This is used by AMM to get a symplectic structure on the moduli space of flat G-connections on a genus h Riemann surface.
By Freed-Hopkins, fusion on branes implies a form of fusion on $K_{G}^{\tau}(G)$.

