18.969 Topics in Geometry, MIT Fall term, 2006

Problem sheet 4

Exercise 1. Let L, L^{\prime} be transverse almost Dirac structures, inducing a \mathbb{Z} grading on the spinors

$$
S=\oplus_{k=0}^{n} \mathcal{U}_{k}
$$

where $\mathcal{U}_{k}=\wedge^{k} L^{*} \cdot K_{L}$, using the identification $L^{*}=L^{\prime}$. As we saw, the twisted derivative $d=d_{H}$ acting on \mathcal{U}_{k} decomposes as $d=\left(\pi_{k-3}+\pi_{k-1}+\pi_{k+1}+\pi_{k+3}\right) \circ d$. Show that the operators $T=\pi_{k+3} \circ d, T^{\prime}=\pi_{k-3} \circ d$ are given by the Clifford action of tensors $T \in \wedge^{3} L^{*}$ and $T^{\prime} \in \wedge^{3} L$, respectively, where

$$
T(a, b, c)=\langle[a, b], c\rangle
$$

and similarly for T^{\prime}. Hence conclude that the integrability of L, L^{\prime} may be expressed as the vanishing of the tensors T, T^{\prime} respectively.
Exercise 2. Let L be a Dirac structure and let L^{\prime} be a transverse almost dirac structure. Use the derived bracket formalism to show that

$$
\left(d_{L} x\right) \cdot=[\partial, x \cdot]
$$

as operators on $S=\Omega^{\bullet}(M)$, where $x \in C^{\infty}\left(\wedge^{\bullet} L^{*}\right)$ and $\partial=\pi_{k-1} \circ d$ on \mathcal{U}^{k} in the notation of the previous problem.
Exercise 3. Let L, L^{\prime} be transverse Dirac structures (both integrable). Show that

$$
d_{*}[X, Y]=\left[d_{*} X, Y\right]+\left[X, d_{*} Y\right],
$$

where $X, Y \in C^{\infty}(L),[\cdot, \cdot]$ is the induced Lie bracket on L, and d_{*} is the Lie algebroid differential for $L^{\prime}=L^{*}$. Hint: Use the Jacobi identity for the Courant bracket and the description of d_{*} via

$$
\left(d_{*} X\right) \cdot=[\partial, X \cdot]
$$

as operators on S.
Exercise 4. Let L be the complex Dirac structure associated to a generalized complex structure \mathcal{J}, and let K_{L} be the complex pure spinor line defining L. Use the Mukai pairing to demonstrate that

$$
2 c_{1}\left(K_{L}\right)=c_{1}^{+}+c_{1}^{-},
$$

where $c_{1}^{ \pm}$are the first Chern classes of the $U(n, n)$ structure defined by \mathcal{J}. Explain why $c_{1}^{+}+c_{1}^{-}$must be even a priori.
Exercise 5. Let \mathcal{J} be a generalized complex structure on the exact Courant algebroid E such that $\mathcal{J} T^{*}=T^{*}$. Write the decomposition of \mathcal{J} given a general (non-complex) splitting $s: T \longrightarrow E$. Hint: determine the difference between the splittings s and $-\mathcal{J} s J$, where J is the induced complex structure on $E / T^{*}=T$. How does this compare to the expression of \mathcal{J} in a complex splitting?

Exercise 6. Let \mathcal{J} be an almost generalized complex structure. Show that

$$
\mathcal{N}_{\mathcal{J}}(x, y)=[\mathcal{J} x, \mathcal{J} y]-\mathcal{J}[\mathcal{J} x, y]-\mathcal{J}[x, \mathcal{J} y]-[x, y]
$$

is tensorial, and express it in terms of the tensors T, T^{\prime} from the first exercise.
Exercise 7. Let \mathcal{J} be a generalized complex structure. Show that $e^{\theta \mathcal{J}}\left(T^{*}\right)$ is a Dirac structure for all θ.

Exercise 8. Let $\varphi=e^{B+i \omega} \Omega$ be the complex pure spinor corresponding to a generalized complex structure \mathcal{J}, and let $f: \Delta \longrightarrow T$ be the inclusion of the symplectic foliation determined by \mathcal{J} associated with the canonical Poisson structure π. Show that $f^{*} \omega$ coincides with the symplectic form induced by π on Δ.

Exercise 9. Let (g, I, J) define a hyperKähler structure, so that $(g, I),(g, J)$ are Kähler and $I J=-J I=: K$. Let $\omega_{I}, \omega_{J}, \omega_{K}$ be the associated symplectic forms. Verify that for a, b, c real and $a^{2}+b^{2}+c^{2}=1$,

$$
\mathcal{J}(a, b, c)=a \mathcal{J}_{I}+b \mathcal{J}_{\omega_{J}}+c \mathcal{J}_{\omega_{K}}
$$

squares to -1 , and is an orthogonal endomorphism of $T \oplus T^{*}$. Also prove that for $a \neq 0, \mathcal{J}(a, b, c)$ is a B-field transform of a symplectic structure. Conclude that $\mathcal{J}(a, b, c)$ is an integrable generalized complex structure for all points on the sphere.

