18.969 Topics in Geometry, MIT Fall term, 2006

Problem sheet 2

Exercise 1. Let $J \in \operatorname{End}(T)$ be an almost complex structure, and let $N_{J}=$ $[J, J]$ be its Nijenhuis tensor, defined alternatively by

$$
[J, J](X, Y)=[X, Y]-[J X, J Y]+J([J X, Y]+[X, J Y])
$$

Defining $\partial: \Omega^{p, q}(M) \longrightarrow \Omega^{p+1, q}(M)$ by $\partial=\pi_{p+1, q} d$ and $\bar{\partial}$ its complex conjugate, then

$$
d=\partial+\bar{\partial}+d_{N}
$$

determine the operator d_{N} and its decomposition into (p, q) types.
Exercise 2. Show that $S^{4 k}$ has no almost complex structure.
Exercise 3. Let (M, J) be a complex manifold. Show that the partial connection

$$
\bar{\partial}_{X} Y=\pi_{1,0}[X, Y], \quad X \in C^{\infty}\left(T_{0,1}\right), Y \in C^{\infty}\left(T_{1,0}\right)
$$

defines a holomorphic structure on $T_{1,0} \cong(T, J)$, therefore called the holomorphic tangent bundle.

Show furthermore that this may also be expressed in terms of the Nijenhuis bracket

$$
[J, \cdot]: \Omega^{0}(T) \longrightarrow \Omega^{0}(T)
$$

Exercise 4. We saw that the space of Dirac structures $\operatorname{Dir}(V)$ in $V \oplus V^{*}$ is equivalent to $O(n, \mathbb{R})$, the real orthogonal group. By choosing a generalized metric $g+b$, determine explicitly the map

$$
O(V, g) \longrightarrow \operatorname{Dir}(V)
$$

sending $A \in O(V, g)$ to D_{A}.
Exercise 5. Let $\mathcal{D} V=V \oplus V^{*}$ and $\mathcal{D} W=W \oplus W^{*}$. Show that the graph Γ_{Q} of any orthogonal isomorphism $Q: \mathcal{D} V \longrightarrow \mathcal{D} W$ is a Dirac structure in $\mathcal{D} V \times \overline{\mathcal{D} W}$, where $\overline{\mathcal{D} W}$ denotes $W \oplus W^{*}$ with the opposite (negative) bilinear form.

Show that even if Dirac structures $\Gamma_{1} \subset \mathcal{D} U \times \overline{\mathcal{D} V}$ and $\Gamma_{2} \subset \mathcal{D} V \times \overline{\mathcal{D} W}$ are not graphs of orthogonal maps, they can be composed to produce a Dirac structure $\Gamma_{1} \circ \Gamma_{2} \subset \mathcal{D} U \times \overline{\mathcal{D} W}$.

Exercise 6. Let $C_{+} \subset V \oplus V^{*}$ be a maximal positive-definite subspace, which must therefore be the graph of $g+b$ for $g \in S^{2} V^{*}$ and $b \in \wedge^{2} V^{*}$. Let $G=$ $\left.1\right|_{C_{+}}-\left.1\right|_{C_{-}}$be the associated generalized metric, so that $\langle G \cdot, \cdot\rangle$ defines a positivedefinite metric on $V \oplus V^{*}$.

- We saw that the restriction of G to $V \subset V \oplus V^{*}$ was

$$
g^{b}=g-b g^{-1} b .
$$

Show explicitly that g^{b} is indeed positive-definite. Also, show that its volume form is given by

$$
\text { vol }_{g^{b}}=\operatorname{det}\left(g-b g^{-1} b\right)^{1 / 2}=\operatorname{det}(g+b) \operatorname{det} g^{-1 / 2} .
$$

(Hint: $g-b g^{-1} b=(g-b) g^{-1}(g+b)$.)

- Let $\left(e_{i}\right)$ be an oriented g -orthonormal basis for V. Show that $\left(a_{i}=e_{i}+(g+\right.$ b) $\left(e_{i}\right)$) form an oriented orthonormal basis for C_{+}. Hence $*=a_{1} \cdots a_{n}$ is a generalized Hodge star. Show that $* \in \operatorname{Pin}\left(V \oplus V^{*}\right)$ covers $-G \in$ $O\left(V \oplus V^{*}\right)$.
- Show explicitly that the Mukai pairing $(* 1,1)=\operatorname{det}(g+b) \operatorname{det} g^{-1 / 2}=$ vol $_{g^{b}}$.
- Show that vol $_{g^{b}} /$ vol $_{g}=\left\|e^{b}\right\|_{g}^{2}$ (Hint: determine the relationship between $*_{g}$ and $*_{g+b}$.)

Exercise 7. Show that the derived bracket expression $[a, b]_{H} \cdot \varphi=\left[\left[d_{H}, a\right], b\right] \cdot \varphi$ for the twisted Courant bracket (where $d_{H}=d+H \wedge \cdot$) agrees with that obtained from the axioms of an exact Courant algebroid, i.e.

$$
[X+\xi, Y+\eta]_{H}=[X, Y]+L_{X} \eta-i_{Y} d \xi+i_{Y} i_{X} H .
$$

Exercise 8. Let $[\cdot, \cdot]$ be the derived bracket on $C^{\infty}\left(T \oplus T^{*}\right)$ of the operator $d_{H}=d+H \wedge \cdot$ but do not assume that $d H=0$. Prove that

$$
[[a, b], c]=[a,[b, c]]-[b,[a, c]]+i_{\pi c} i_{\pi b} i_{\pi a} d H .
$$

Exercise 9. Let $\pi: T^{*} \longrightarrow T$ be a Poisson structure with associated Poisson bracket $\{$,$\} . Show that T^{*}$ inherits a natural Lie algebroid structure, where π is the anchor map and

$$
[d f, d g]=d\{f, g\} .
$$

