18.969 Topics in Geometry, MIT Fall term, 2006

Problem sheet 1

Exercise 1. Let m_{f} be the operation of multiplication by the function $f \in$ $C^{\infty}(M)$. Since $\left[d, m_{f}\right]=e_{d f}$, where $e_{d f}: \rho \mapsto d f \wedge \rho$, this means that the symbol sequence associated to the de Rham complex

$$
\Omega^{k-1}(M) \xrightarrow{d} \Omega^{k}(M) \xrightarrow{d} \Omega^{k+1}(M)
$$

is the "Koszul complex" of wedging by a 1 -form ξ :

$$
\wedge^{k-1} T^{*} \xrightarrow{e_{\xi}} \wedge^{k} T^{*} \xrightarrow{e_{\xi}} \wedge^{k+1} T^{*}
$$

Show that for $\xi \neq 0$ the above is an exact sequence, i.e. $\operatorname{ker} e_{\xi}=\operatorname{im} e_{\xi}$.
For the significance of this, see section 3, Atiyah and Bott: "A Lefschetz Fixed Point Formula for Elliptic Complexes: II. Applications", Annals of Mathematics, 2nd ser., Vol. 88, No. 3 (1968) pp. 451-491. Available on JSTOR.

Exercise 2. Let $X, Y \in C^{\infty}(T)$ and $\pi \in C^{\infty}\left(\wedge^{2} T\right)$, so that, in a coordinate patch with coordinates x_{i}, we have $X=X^{i} \frac{\partial}{\partial x^{i}}, Y=Y^{i} \frac{\partial}{\partial x^{i}}$ and $\pi=\pi^{i j} \frac{\partial}{\partial x^{i}} \wedge \frac{\partial}{\partial x^{j}}$. Compute $[X, Y],[\pi, X]$, and $[\pi, \pi]$ in coordinates.
Exercise $3\left(^{*}\right)$. We saw that vector fields $X \in C^{\infty}(T)$ determine degree -1 derivations of the graded commutative algebra of differential forms, i.e.

$$
i_{X} \in \operatorname{Der}^{-1}\left(\Omega^{\bullet}(M)\right)
$$

Also, the exterior derivative is a derivation of degree +1 :

$$
d \in \operatorname{Der}^{1}\left(\Omega^{\bullet}(M)\right)
$$

As a result, the graded commutator $L_{X}=\left[i_{X}, d\right]$, called the Lie derivative, is also a derivation:

$$
L_{X} \in \operatorname{Der}^{0}\left(\Omega^{\bullet}(M)\right)
$$

Are there any more derivations? Describe the entire graded Lie algebra of derivations completely.

Useful reference: Michor, "Remarks on the Frölicher-Nijenhuis bracket", Rendiconti del Circolo Matematico di Palermo, Serie II, Suppl. 16, 1987. Available on
http://www.mat.univie.ac.at/~michor/listpubl.html
Exercise 4. Let $\omega \in C^{\infty}\left(\wedge^{2} T^{*}\right)$ be nondegenerate, so that the map $\omega: T \longrightarrow$ T^{*} defined by

$$
\omega: X \mapsto i_{X} \omega
$$

is invertible. Show that this is only possible if $\operatorname{dim} T=2 n$ for some integer n.

Then $\operatorname{det} \omega: \operatorname{det} T \longrightarrow \operatorname{det} T^{*}$, or in other words

$$
\operatorname{det} \omega \in \operatorname{det} T^{*} \otimes \operatorname{det} T^{*}
$$

Show that $\operatorname{det} \omega=(\operatorname{Pf} \omega)^{2}$, where

$$
\operatorname{Pf} \omega=\frac{1}{n!} \omega^{n}
$$

Exercise 5. Show that S^{4} has no symplectic structure. Show that $S^{2} \times S^{4}$ has no symplectic structure.
Exercise $6\left(^{*}\right)$. Let $P \in C^{\infty}\left(\wedge^{2} T\right)$ and let $\xi_{1}, \xi_{2}, \xi_{3} \in \Omega^{1}(M)$.

- Show that

$$
i_{P}\left(\xi_{1} \wedge \xi_{2} \wedge \xi_{3}\right)=i_{P}\left(\xi_{1} \wedge \xi_{2}\right) \xi_{3}+i_{P}\left(\xi_{2} \wedge \xi_{3}\right) \xi_{1}+i_{P}\left(\xi_{3} \wedge \xi_{1}\right) \xi_{2}
$$

- Defining the bracket on functions $\{f, g\}=i_{P}(d f \wedge d g)$, show that $\{\cdot, \cdot\}$ satisfies the Jacobi identity if and only if $[P, P]=0$.
- Let $\omega \in C^{\infty}\left(\wedge^{2} T^{*}\right)$ be nondegenerate. Then prove that $d \omega=0$ if and only if $\left[\omega^{-1}, \omega^{-1}\right]=0$, where $\omega^{-1} \in C^{\infty}\left(\wedge^{2} T\right)$ is obtained by inverting ω as a map $\omega: T \longrightarrow T^{*}$.
Exercise 7. Write the Poisson bracket $\{f, g\}$ in coordinates for $\pi=\pi^{i j} \frac{\partial}{\partial x^{i}} \wedge$ $\frac{\partial}{\partial x^{j}}$.
Exercise $8\left(^{*}\right)$. Let $v \in C^{\infty}\left(\wedge^{2} T^{*}\right)$ be the standard volume form of the outward-oriented S^{2}, and let $h \in C^{\infty}\left(S^{2}\right)$ be the standard height function taking value 0 along the equator and ± 1 on the poles. Define $\pi=h v^{-1}$ and show π is a Poisson structure. Determine $d \pi$ as a section of $T^{*} \otimes \wedge^{2} T=T$ along the vanishing set of π and draw a picture of Hamiltonian flow by the function h.
Exercise 9. Describe Hamiltonian flow in the symplectic manifold $T^{*} M$ by the Hamiltonian $H=\pi^{*} f$, where $\pi: T^{*} M \longrightarrow M$ is the natural projection and $f \in C^{\infty}(M)$. Also, show that a coordinate chart $U \subset M$ determines a system of n independent, commuting Hamiltonians on $T^{*} U \subset T^{*} M$.

Exercise 10 (*). State the Poincaré lemma for the de Rham complex, thought * of as a complex of sheaves. State the Poincaré lemma (sometimes called the Dolbeault lemma) for the Dolbeault complex $\left(\Omega^{p, \bullet}(M), \bar{\partial}\right)$. Explain why these lemmas imply that the cohomology with values in the sheaf of locally constant functions and holomorphic p-forms can be computed by

$$
\begin{aligned}
H^{q}(M, \mathbb{R}) & =\frac{\left.\operatorname{ker} d\right|_{\Omega^{q}}}{\left.\operatorname{im} d\right|_{\Omega^{q-1}}} \\
H^{q}\left(M, \Omega_{h o l}^{p}\right) & =\frac{\left.\operatorname{ker} \bar{\partial}\right|_{\Omega^{p, q}}}{\left.\operatorname{im} \bar{\partial}\right|_{\Omega^{p, q-1}}}
\end{aligned}
$$

Finally, determine if the Poisson cohomology complex $\left(C^{\infty}\left(\wedge^{p} T\right), d_{\pi}\right)$ satsifies, in general, the Poincaré lemma.

