SYMPLECTIC GEOMETRY, LECTURE 25

Prof. Denis Auroux

1. Spin Structures

Let $\left(X^{4}, g\right)$ be an oriented Riemannian manifold, $S=S_{+} \oplus S_{-} \rightarrow X$ a spin^{c} structure with Clifford multiplication $\gamma: T^{*} X \otimes S \rightarrow S$.

Example. If X is almost-complex, $S_{+}=\left(\bigwedge^{0,0} \otimes E\right) \oplus\left(\bigwedge^{0,2} \otimes E\right), S_{-}=\left(\bigwedge^{0,1} \otimes E\right), \gamma(u)=\sqrt{2}\left[u^{0,1} \wedge \cdot-\iota_{\left.\left(u^{1,0}\right) \# \cdot\right]}\right.$. As defined last time, $L=\operatorname{det}\left(S_{+}\right)=\operatorname{det}\left(S_{-}\right)=K_{X}^{-1} \otimes E^{2}$.

As we stated last time, the Clifford multiplication extends to differential forms with $\bigwedge_{+}^{2} \cong \operatorname{End} \operatorname{ELAH}\left(S^{+}\right)$ (where the latter group is the space of traceless, anti-hermitian endomorphisms). We also have the Dirac operator associated to a spin^{c} connection ∇^{A} on S :

$$
\begin{equation*}
D_{A}: \Gamma\left(S^{ \pm}\right) \rightarrow \Gamma\left(S^{\mp}\right), D_{A} \psi=\sum_{i} \gamma\left(e^{i}\right)\left(\nabla_{e_{i}}^{A} \psi\right) \tag{1}
\end{equation*}
$$

Example. If X is Kähler, the spin^{c} connection is induced by ∇_{a} connection on E, and $D_{A}=\sqrt{2}\left(\bar{\partial}_{a}+\bar{\partial}_{a}^{*}\right)$.
Example. $\nabla^{A}=\nabla^{A_{0}}+i a \otimes$ id on $S_{ \pm}$for $a \in \Omega^{1}$ corresponding to $A=A_{0}+2 i a$ on L. The associated decomposition of the Dirac operator is $D_{A}=D_{A_{0}}+\gamma(a)$.

2. Seiberg-Witten Equations

Definition 1. The Seiberg-Witten equations are the equations

$$
\begin{align*}
D_{A} \psi & =0 \in \Gamma\left(S^{-}\right) \\
\gamma\left(F_{A}^{+}\right) & =\left(\psi^{*} \otimes \psi\right)_{0}[+\gamma(\mu)] \in \Gamma\left(\operatorname{End}\left(S^{+}\right)\right) \tag{2}
\end{align*}
$$

where A is a Hermitian connection on $L=\bigwedge^{2} S^{ \pm}$(corresponding to a spin^{c} connection $\left.\nabla^{A}\right), \psi \in \Gamma(S+)$ is a section, $F_{A}^{+}=\frac{1}{2}\left(F_{A}+* F_{A}\right) \in i \Omega_{+}^{2}$ for $F_{A} \in i \Omega^{2}$ the curvature of $A,\left(\psi^{*} \otimes \psi\right)_{0}$ is the traceless part of $\psi^{*} \otimes \psi$, and μ is an imaginary self-dual form fixed in advance.

Now, there exists an ∞-dimensional group of symmetries preserving solutions, called the gauge group $\mathcal{G}=$ $C^{\infty}\left(X, S^{1}\right)$ where $f \in C^{\infty}\left(X, S^{1}\right)$ acts by

$$
\begin{equation*}
(A, \psi) \mapsto\left(A-2 d f \cdot f^{-1}, f \psi\right) \tag{3}
\end{equation*}
$$

Proposition 1. This preserves the solution space, and the action of \mathcal{G} is free unless $\psi \equiv 0$ (reducible solutions), where $\operatorname{Stab}((A, 0)) \cong S^{1}$ is the space of constant maps.

Reducible solutions can happen $\Leftrightarrow F_{A}^{+}=\mu$ has a solution $\Leftrightarrow(g, \mu)$ lie in a codimension b_{2}^{+}subspace. Thus, we want to assume $b_{2}^{+}(X) \geq 1$, and (g, μ) generic. Note that, for $\mu=0, F_{A}^{+}=0 \Leftrightarrow \frac{i}{2 \pi} F_{A}$ is closed and antiselfdual in the class $c_{1}(L) \in \mathcal{H}_{-}^{2} \subset \mathcal{H}_{-}^{2} \oplus \mathcal{H}_{+}^{2}=H^{2}$.

Definition 2. The moduli space of solutions $\mathcal{M}(S, g, \mu)$ is the set of solutions modulo \mathcal{G}.
Theorem 1. For (g, μ) generic, \mathcal{M} (if nonempty) is a smooth, compact, orientable manifold of dimension

$$
\begin{equation*}
d(S)=\frac{1}{4}\left(c_{1}(L)^{2} \cdot[X]-(2 \chi+3 \sigma)\right) \tag{4}
\end{equation*}
$$

Idea: We want to understand, given a solution $\left(A_{0}, \psi_{0}\right)$ to the SW equations, the nearby solutions to the same equations. We linearize the SW equations, and let $(a, \phi) \in \Omega^{1}(X, i \mathbb{R}) \times C^{\infty}\left(S^{+}\right)$be a small change in the solution, obtaining

$$
\begin{equation*}
P_{1}:(a, \phi) \mapsto D_{A_{0}} \phi+\gamma(a) \psi_{0} \tag{5}
\end{equation*}
$$

as the linearization of the first equation and

$$
\begin{equation*}
P_{2}:(a, \phi) \mapsto \gamma\left((d a)^{+}\right)-\left(\phi \otimes \psi_{0}^{*}+\psi_{0} \otimes \phi^{*}\right)_{0} \tag{6}
\end{equation*}
$$

as the linearization of the second equation. We restrict $P=P_{1} \oplus P_{2}$ to a slice transverse to the \mathcal{G}-action $A \mapsto A-2 d f \cdot f^{-1}, \psi \mapsto f \psi$, i.e. to $\mathcal{S}=\left\{(a, \phi) \mid d^{*} a=0\right.$ and $\left.\operatorname{Im}\left(\left\langle\phi, \psi_{0}\right\rangle_{L^{2}}\right)=0\right\}$ (which is transverse to the \mathcal{G}-orbit at $\left.\left(A_{0}, \psi_{0}\right)\right)$. Then $\left.P\right|_{\text {Ker } d^{*} \times L_{1}^{2}\left(S^{+}\right)}$is a differential operator of order 1, and is Fredholm (f.d. kernel and cokernel) since

$$
\begin{equation*}
\left(P \oplus d^{*}\right): L_{2}^{2}\left(X, i \wedge^{1}\right) \times L_{1}^{2}\left(S^{+}\right) \rightarrow L^{2}\left(S^{-}\right) \times L_{1}^{2}\left(X, i \wedge_{+}^{2}\right) \times L_{1}^{2}(X, i \mathbb{R}) \tag{7}
\end{equation*}
$$

$\left(=D_{A_{0}} \oplus\left(d^{+} \oplus d^{*}\right)+\right.$ order 0$)$ is elliptic. Elliptic regularity implies that both Ker, Coker lie in C^{∞}. For generic $(g, \mu), P$ is surjective (specifically, consider $\{(A, \psi, \mu) \mid \cdots\} / \mathcal{G}$ and apply Sard's theorem to project to μ and find a good choice). We expect that $\operatorname{Ker} P$ is the tangent space to \mathcal{M} : this is only ok if Coker $P=0$, so we can use the implicit function theorem to show that \mathcal{M} is smooth with $T \mathcal{M}=\left.\operatorname{Ker} P\right|_{\mathcal{S}}$. The statement about the dimension follows from the Atiyah-Singer index theorem, which gives a formula for $d(S)=\operatorname{ind}\left(\left.P\right|_{\mathcal{S}}\right)=$ dim Ker $-\operatorname{dim}$ Coker . Compactness of \mathcal{M} follows from the a priori bounds on the solutions: the key point is that we get a bound on $\sup |\psi|$, so elliptic regularity and "bootstrapping" give us bounds in all norms.

Consider a solution (A, ψ) of the SW equations (for simplicity assume $\mu=0$). We have the following Weitzenbock formula for the Dirac operator:

$$
\begin{equation*}
D_{A}^{2} \psi=\nabla_{A}^{*} \nabla_{A} \psi+\frac{s}{4} \psi+\frac{1}{2} \gamma\left(F_{A}^{+}\right) \psi \tag{8}
\end{equation*}
$$

where ∇_{A}^{*} is the L^{2}-adjoint of ∇_{A}, s is the scalar curvature of the metric g (this can be shown by calculation in a local frame). Now,

$$
\begin{equation*}
D_{A} \psi=0 \Longrightarrow 0=\left\langle D_{A}^{2} \psi, \psi\right\rangle=\left\langle\nabla_{A}^{*} \nabla_{A} \psi, \psi\right\rangle+\frac{s}{4}|\psi|^{2}+\frac{1}{2}\left\langle\gamma\left(F_{A}^{+}\right) \psi, \psi\right\rangle \tag{9}
\end{equation*}
$$

where $\gamma\left(F_{A}^{+}\right)=\left(\psi^{*} \otimes \psi\right)_{0}=\psi^{*} \otimes \psi-\frac{1}{2}|\psi|^{2}$. Then

$$
\begin{equation*}
0=\frac{1}{2} d^{*} d|\psi|^{2}+\left|\nabla_{A} \psi\right|^{2}+\frac{s}{4}|\psi|^{2}+\frac{1}{4}|\psi|^{4} \tag{10}
\end{equation*}
$$

Take a point where $|\psi|$ is maximal. Then

$$
\begin{equation*}
\frac{1}{2} d^{*} d|\psi|^{2} \geq 0 \Longrightarrow \frac{s}{4}|\psi|^{2}+\frac{1}{4}|\psi|^{4} \leq 0 \Longrightarrow|\psi|^{2} \leq \max (-s, 0) \tag{11}
\end{equation*}
$$

Theorem 2. If g has scalar curvature >0, then the $S W$-invariants $\equiv 0$.
Proof. A small generic perturbation ensures that there are no reducible solutions. The above estimate on sup $|\psi|$ ensures that there are no irreducible solutions either.

