SYMPLECTIC GEOMETRY, LECTURE 24

Prof. Denis Auroux

1. Homeomorphism Classification of Simply Connected Compact 4-Manifolds

Theorem 1 (Freedman). M_1, M_2 compact, simply connected, oriented smooth 4-manifolds are homeomorphic \Leftrightarrow the intersection pairings $Q_i : H_2(M_i, \mathbb{Z}) \times H_2(M_i, \mathbb{Z}) \to \mathbb{Z}$ are isomorphic as integer quadratic forms (of $|\det| = 1$). It suffices to check that the following invariants coincide: $b_2 = \operatorname{rk} H_2(M), \sigma = b_2^+ - b_2^-$ (the signature), and $Q(x, x) \mod 2\forall x$ (the parity).

Example. For $M = \mathbb{CP}^2$, we have $Q_{\mathbb{CP}^2} = (1)$ on $H_2(\mathbb{CP}^2, \mathbb{Z}) = \mathbb{Z}[\mathbb{CP}^2]$, while $N = \overline{\mathbb{CP}^2}$ (with reversed orientation) has $Q_{\overline{\mathbb{CP}^2}} = (-1)$. By Mayer-Vietoris, one can see that $H_2(M \# N) = H_2(M) \oplus H_2(N)$ and $Q_{M\#N} = Q_M \oplus Q_N$. Applying this to *m* copies of \mathbb{CP}^2 and *n* copies of $\overline{\mathbb{CP}^2}$ gives the matrix $\begin{pmatrix} I_{m \times m} \\ -I_{n \times n} \end{pmatrix}$ which gives all the unimodular odd quadratic forms ($|\det| = 1$).

Example. $Q_{S^2 \times S^2} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ has $b_2^+ = b_2^- = 1$ like $\mathbb{CP}^2 \# \overline{\mathbb{CP}^2}$, but different parity.

Example. A K3 is a surface of degree 4 in \mathbb{CP}^3 (given, for instance, by $\{x_0^4 + x_1^4 + x_2^4 + x_3^4 = 0\}$). We have $b_2 = 22, b_2^+ = 3, b_2^- = 19$, and $Q = 2.(-E_8) \oplus 3.\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$, where $(-E_8)$ is the matrix

(1)
$$\begin{pmatrix} -2 & 1 & & & \\ 1 & -2 & 1 & & & \\ & 1 & -2 & 1 & & & \\ & & 1 & -2 & 1 & & \\ & & & 1 & -2 & 1 & 0 & 1 \\ & & & 1 & -2 & 1 & 0 & 1 \\ & & & 1 & -2 & 1 & 0 & \\ & & & 1 & 0 & 0 & -2 \end{pmatrix}$$

Theorem 2 (Donaldson). In the even case, $Q = (2k).(\pm E_8) \oplus m \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$.

Remark. The Rokhlin signature theorem $(16|\sigma)$ in the even case) implies that the number of $\pm E_8$ summands is even.

Remark. The $\frac{11}{8}$ conjecture claims that the *m* in the theorem above satisfies $m \ge 3k$: it has been shown (Furuta, 1995) that $m \ge 2k$.

Remark. Smooth compact 4-manifolds may have infinitely many exotic smooth structures: K3 surfaces are known to have infinitely many smooth structures, as do the manifolds $\mathbb{CP}^2 \# n.\overline{\mathbb{CP}^2}$ for $n \ge 3$.

2. Seiberg-Witten Invariants [J. Morgan], [Witten '94]

Let X^4 be a compact manifold, with Riemannian metric g and spin^c structure s. The goal of Seiberg-Witten theory is to assign a number to the pair (g, s) giving the number of "abelian supersymmetric magnetic monopoles" on the manifold.

Definition 1. A spin^c structure is a rank 4 Hermitian complex vector bundle $S \to X$ along with a Clifford multiplication (unitary representation of a Clifford algebra) $\gamma : T^*X \times S \to S$ (i.e. $\gamma(u)\gamma(v) + \gamma(v)\gamma(u) = -2\langle u, v \rangle$ id and $\gamma(u)^* = -\gamma(u)$).

Prof. Denis Auroux

Example. For $\{e_i\}$ an orthonormal basis, $\gamma(e^i) \in U(S)$, since $\gamma(e^i)^2 = -1$, and $\gamma(e^i)\gamma(e^j) + \gamma(e^j)\gamma(e^i) = 0$.

We extend our Clifford multiplication to

(2)
$$\gamma: \bigwedge^* (T^*X) \times S \to S, \gamma(e^{i_1} \wedge \dots \wedge e^{i_p}) = \gamma(e^{i_1}) \cdots \gamma(e^{i_p})$$

for (e^i) orthonormal. Applying this to the volume form gives $\gamma(\text{vol})^2 = (\gamma(e^1)\gamma(e^2)\gamma(e^3)\gamma(e^4))^2 = \text{id}$ and thus a decomposition $S = S^+ \oplus S^-$, with the former having $\gamma(\text{vol}) = -1$ and the latter $\gamma(\text{vol}) = 1$. Moreover, $\gamma(e^i)$ maps S^{\pm} to S^{\mp} .

Lemma 1. We can represent complexified forms via $\gamma : \wedge^* \otimes \mathbb{C} \xrightarrow{\sim} \text{End}(S^+ \oplus S^-)$. More specifically, we have decompositions

(3)

$$\wedge^{even} \otimes \mathbb{C} \cong \operatorname{End}(S^+) \oplus \operatorname{End}(S^-)$$

$$\wedge^{odd} \otimes \mathbb{C} \cong \operatorname{Hom}(S^+, S^-) \oplus \operatorname{Hom}(S^-, S^+)$$

with $\gamma(*\alpha) = \gamma(\alpha)$ on S^+ and $-\gamma(\alpha)$ on S^- for any $\alpha \in \wedge^2$, so

(4)
$$\operatorname{End}(S^+) = \mathbb{C} \oplus (\wedge^2_+ \otimes \mathbb{C}), \operatorname{End}(S^-) = \mathbb{C} \oplus (\wedge^2_- \otimes \mathbb{C})$$

Theorem 3. Every compact 4-manifold admits spin^c structures classified up to 2-torsion by $c = c_1(S^+) = c_1(S^-) = c_1(L) \in H^2(X, \mathbb{Z})$, where $L = \det(S^+) = \wedge^2 S^+ = \wedge^2 S^-$. Moreover, c is a characteristic element, i.e. $\langle c_1(L), \alpha \rangle \equiv Q(\alpha, \alpha) \mod 2$.

In particular, if $E \to X$ is a line bundle, the mapping $(S^+, S^-) \mapsto (S^+ \otimes E, S^- \otimes E)$ gives a twisting of the spin^c structure by any line bundle.

Proposition 1. If X admits a g-orthogonal almost-complex structure J, then \exists a canonical spin^c structure given by $S^+ = \wedge^{0,0} \oplus \wedge^{0,2}, S^- = \wedge^{(0,1)}$ with

(5)
$$\forall u \in T^*X, \gamma(u) = \sqrt{2}[(u^{0,1} \wedge \cdot) - \iota_{(u^{1,0})^{\#}}(\cdot)]$$

Note that $L = \wedge^2 S^- = \wedge^2 S^+ = \wedge^{0,2}$ is the anti-canonical bundle. All other spin structures are given by $S^+ = E \oplus (\wedge^{0,2} \otimes E), S^- = \wedge^{0,1} \otimes E, \forall E \to X$ a line bundle.

3. DIRAC OPERATOR

Definition 2. A spin^c connection on S^{\pm} is a Hermitian connection ∇^A s.t.

(6)
$$\nabla_v^A(\gamma(u)\phi) = \gamma(\nabla_v^{LC}u)\phi + \gamma(u)\nabla_v^A\phi$$

Proposition 2. Any two spin^c connections differ by a 1-form on X of the type $ia \otimes id_{S^{\pm}}$, and the induced connection A on $L = \wedge^2 S^{\pm}$ defines the spin^c connection uniquely.

Definition 3. Given a spin^c structure and a connection, the Dirac operator is

(7)
$$D_A: \Gamma(S^{\pm}) \to \Gamma(S^{\pm}), \ D_A \psi = \sum_i \gamma(e^i) \nabla^A_{e_i} \psi$$

for $\{e_i\}$ an orthonormal basis (though it is independent of choice of basis).

Example. On a Kähler manifold, $S^+ = E \oplus \wedge^{0,2} \otimes E, S^- = \wedge^{0,1} \otimes E, \nabla^A$ corresponds to a unitary connection ∇^a on E, i.e. via $\nabla^A = \nabla^{LC} \otimes 1 + 1 \otimes \nabla^a$. Then $D_A = \sqrt{2}(\overline{\partial}_a + \overline{\partial}_a^*)$ and $D_A^2 = 2\overline{\Box}_a$.

D = (0 - D(Q - 1))

Definition 4. The Seiberg-Witten equations are the equations

(8)

$$\gamma(F_A^+) = (\psi^* \otimes \psi)_0 \in \Gamma(\text{End}(S^+))$$

where A is a Hermitian connection on $L = \wedge^2 S^{\pm}$ (corresponding to a spin^c connection on S^{\pm}), $\psi \in \Gamma(S^+)$ is a section, $F_A^+ = \frac{1}{2}(F_A + *F_A) \in i\Omega_+^2$ for $F_A \in i\Omega^2$ the curvature of A, and $(\psi^* \otimes \psi)_0 = \psi^* \otimes \psi - \frac{1}{2} |\psi|^2$ is the traceless part of $\psi^* \otimes \psi$.