SYMPLECTIC GEOMETRY, LECTURE 23

Prof. Denis Auroux

1. Branched Covers

Definition 1. For (M, ω) a symplectic manifold, $p \in M$, a local diffeomorphism $\phi: U \rightarrow \mathbb{C}^{n}$ for $U \ni p$ is ω-tame if $\left(\phi_{*} \omega\right)(v, i v)>0 \forall v \neq 0 \in \mathbb{C}^{n}$. This is, $\phi^{*} J_{0}$ is ω-tame, i.e. complex lines in \mathbb{C}^{n} give symplectic submanifolds in M.

Definition 2. A map $f: X^{4} \rightarrow\left(Y^{4}, \omega_{Y}\right)$ from a compact, oriented manifold to a compact, symplectic manifold is a symplectic branched covering if $\forall p \in X, \exists U \ni p, V \ni f(p)$ coordinate neighborhoods (with $\phi: U \rightarrow \mathbb{C}^{2}$ an oriented diffeomorphism, $\psi: V \rightarrow \mathbb{C}^{2}$ an ω_{Y}-tame diffeomorphism) s.t. the right vertical map of the commutative diagram

is one of
(1) $(u, v) \mapsto\left(z_{1}, z_{2}\right)=(u, v)$ (local diffeomorphism),
(2) $(u, v) \mapsto\left(z_{1}, z_{2}\right)=\left(u^{2}, v\right)$ (simple branching),
(3) $(u, v) \mapsto\left(z_{1}, z_{2}\right)=\left(u^{3}-u v, v\right)$ (cusp)

Remark. Simple branching also makes sense in higher dimensions as $\left(x_{1}, \ldots, x_{n}\right) \mapsto\left(x_{1}^{2}, x_{2}, \ldots, x_{n}\right)$. Moreover, we could allow higher order branching, i.e. $(u, v) \mapsto\left(u^{p}, v\right)$ for $p>2$, but this isn't generic.
Remark. The three models given above correspond to the 3 generic local models for holomorphic maps $\mathbb{C}^{2} \rightarrow \mathbb{C}^{2}$.
Definition 3. The ramification curve is the set $R \subset X$ s.t. $R=\{p \in X \mid d f(p)$ not onto $\}$. The branch (discriminant) curve is $D=f(R) \subset Y$, i.e. $D=\left\{q \in Y \mid \# f^{-1}(q)<\operatorname{deg} f\right\}$.

We can calculate these curves explicitly in local coordinates. For instance, in the case of simple branching, we have that $\operatorname{Jac}(f)=\operatorname{det}(d f)=\left|\left(\begin{array}{cc}2 u & 0 \\ 0 & 1\end{array}\right)\right|=2 u$, so $R=\{u=0\}, D=\left\{z_{1}=0\right\}$. In the case of a cusp, we have

$$
\operatorname{Jac}(f)=\operatorname{det}(d f)=\left|\left(\begin{array}{cc}
3 u^{2}-v & -u \tag{2}\\
0 & 1
\end{array}\right)\right|=3 u^{2}-v
$$

so $R=\left\{v=3 u^{2}\right\}$ and $D=\left\{27 z_{1}^{2}=4 z_{2}^{3}\right\}$. What happens at the cusp: $\forall p \in R$, $\operatorname{Ker} d f=\mathbb{C} \times\{0\} \subset T_{p} \mathbb{C}^{2}$, so Ker $d f$ is transverse to $T R$ at most points, but not at the cusp.

Lemma 1. $R \subset X$ is a smooth, 2-dimensional submanifold, and $D \subset Y$ is a symplectic submanifold of Y immersed except at isolated points (corresponding to cusps). In local coordinates, D is a complex curve, so TD consists of complex lines and $\left.\omega_{Y}\right|_{T D}>0$.

Note that the generic singularities of D consist of two types: complex cusps and transverse double points (with either orientation, i.e. $T_{q} Y=T_{1} \oplus T_{2}$ with agreeing or disagreeing orientations).
Proposition 1. If $f: X^{4} \rightarrow\left(Y^{4}, \omega_{Y}\right)$ is a symplectic branched covering, then X carries a symplectic form ω_{X} (canonical up to isotopy) s.t. $\left[\omega_{X}\right]=f^{*}\left[\omega_{Y}\right]$.

Proof. Note that $f^{*} \omega_{Y}$ is a closed 2-form which is nondegenerate outside of $R . \forall p \in R, K_{p}=\operatorname{Ker} d f_{p} \subset T_{p} X$ is the kernel of $f^{*} \omega_{Y}$, and is a complex line in local coordinates (so it carries a natural orientation). We claim that $\exists \alpha$ an exact 2-form on X s.t. $\forall p \in R,\left.\alpha\right|_{K_{p}}>0$ is positive nondegenerate. Assuming this, we have that $\omega_{X}=f^{*} \omega_{Y}+\epsilon \alpha$ for $\epsilon>0$ sufficient small is closed and nondegenerate, since

$$
\begin{equation*}
\omega_{X} \wedge \omega_{X}=f^{*} \omega_{Y} \wedge f^{*} \omega_{Y}+2 \epsilon f^{*} \omega \wedge \alpha+\epsilon^{2} \alpha \wedge \alpha \tag{3}
\end{equation*}
$$

with the first term ≥ 0 everywhere and nondegenerate outside R, the second term positive on R (in local coordinates, $f^{*} \omega_{Y}=\frac{i \lambda}{2}(d v \wedge d \bar{v})$ for some $\lambda>0$, and $\left.\left.\alpha\right|_{\mathbb{C} \times\{0\}}>0\right)$, and the third term negligible for small ϵ.

We are left to prove our claim. Fix $p \in R$, and choose local coordinates (u, v) on X of our model. Set $x=\operatorname{Re}(u), y=\operatorname{Im}(u)$, and $\alpha_{p}=d\left(\chi_{1}(|u|) \chi_{2}(|v|) x d y\right)$, where χ_{1}, χ_{2} are cutoff functions chosen s.t. $\forall q \in$ $R \cap \operatorname{Supp}\left(\chi_{2}\right), \chi_{1} \equiv 1$. In local coordinates, we have that

$$
\begin{equation*}
\forall(u, v) \in R \cap \operatorname{Supp}\left(\chi_{2}\right),\left.\alpha_{p}\right|_{K=\mathbb{C} \times\{0\}}=\chi_{2}(|v|) d x \wedge d y>0 \tag{4}
\end{equation*}
$$

and 0 outside $\operatorname{Supp}\left(\chi_{2}\right)$. Covering R by small neighborhoods, and taking α to be the sum of these α_{p} gives the desired exact form.

Finally, to see that the choice of ω_{X} is canonical up to isotopy, note that the set of α 's satisfying our claim (i.e. exact 2-forms s.t. $\left.\alpha\right|_{K}>0$ along R) is convex. That is, we can find an ϵ sufficiently small s.t., for two such forms α_{1}, α_{2},

$$
\begin{equation*}
f^{*} \omega_{Y}+\epsilon \alpha_{1}, f^{*} \omega_{Y}+\epsilon \alpha_{2}, f^{*} \omega_{Y}+\epsilon\left(t \alpha_{1}+(1-t) \alpha_{2}\right) \tag{5}
\end{equation*}
$$

are all symplectic.
There is a converse to this result. Let $\left(X^{4}, \omega\right)$ be a complex symplectic, $\frac{1}{2 \pi}[\omega] \in H^{2}(X, \mathbb{Z}), L \rightarrow X$ a line bundle s.t. $c_{1}(L)=\frac{1}{2 \pi}[\omega], J$ a compatible almost-complex structure, etc. Recall that $L^{\otimes k}$ has many approximately-holomorphic sections: choosing three "good" sections, we obtain a map $f: X \rightarrow \mathbb{C P}^{2}$ which locally looks like one of our models. That is,
Theorem 1. Every compact symplectic 4-manifold with integral $\frac{1}{2 \pi}[\omega]$ can be realized as a symplectic branched cover of $\mathbb{C} P^{2}$.

This f_{k} will look like the local models in coordinates which are ω-tame on X and ω_{0}-tame on $\mathbb{C} P^{2}$, and applying the proposition to f_{k} gives $\left[f_{k}^{*} \omega_{0}\right]=k[\omega]$ with ω_{X} isotopic to $k \omega$. Moreover, if k is large enough, then \exists a preferred choice of $f_{k}: X \rightarrow \mathbb{C} P^{2}$ up to homotopy among symplectic branched covers.

Remark. If D is holomorphic, then we can lift J_{0} to X, i.e. X is a Kähler manifold and f is holomorphic. Conversely, if X is not Kähler, then the singular symplectic curve $D \subset \mathbb{C P}^{2}$ is not isotopic to any holomorphic curve.

