SYMPLECTIC GEOMETRY, LECTURE 20

Prof. Denis Auroux

Recall from last time the statement of the following lemma: given L a holomorphic line bundle with curvature $-i\omega$,

Lemma 1. $\forall s \in C^{\infty}(L^{\otimes k}), \exists \xi \in C^{\infty}(L^{\otimes k}) \text{ st. } ||\xi||_{L^2} \leq \frac{C}{\sqrt{k}} \left|\left|\overline{\partial}s\right|\right|_{L^2} \text{ and } s + \xi \text{ is holomorphic.}$

Proof. For this, we use the Weitzenbock formula for

(1)
$$\overline{\Box}_k = \overline{\partial}\overline{\partial}^* + \overline{\partial}^*\overline{\partial}: \Omega^{0,1}(L^{\otimes k}) \circlearrowleft$$

where $\overline{\partial}$ is induced by ∇ on $L^{\otimes k}$. We fix $p \in M$ and work in a neighborhood with p identified with the origin, choosing a standard frame for $T_p M \cong \mathbb{C}^n$ with $e_i = \frac{\partial}{\partial z_i}$ an orthonormal frame of $T^{1,0}$, $e^i = dz_i$ the dual frame. Using parallel transport w.r.t. the Levi-Cevita connection in the radial directions, we still have these frames (though they are no longer given by coordinates). At the origin, moreover, we have $\nabla_{e_i} e_j = 0$. Now,

(2)
$$\overline{\partial}\alpha = \sum_{i} \overline{e^{i}} \wedge \nabla_{\overline{e_{i}}} \alpha, \ \overline{\partial}^{*} \alpha = -\sum_{i} i_{\overline{e_{i}}} (\nabla_{e_{i}} \alpha)$$

so at the origin

(3)
$$\overline{\Box}_k \alpha = -\sum_{i,j} i_{\overline{e_i}} (\overline{e^j} \wedge \nabla_{e_i} \nabla_{\overline{e_j}} \alpha) - \sum_{i,j} \overline{e^j} \wedge (i_{\overline{e_i}} \nabla_{\overline{e_j}} \nabla_{e_i} \alpha)$$

Note that $\nabla_{\overline{e_j}} \nabla_{e_i} \alpha = \nabla_{e_i} \nabla_{\overline{e_j}} \alpha - R(e_i, \overline{e_j}) \alpha$, where

(4)
$$R = R^{T^*M} \otimes \mathrm{id}_{L^k} + \mathrm{id}_{T^*M} \otimes R^{L^k}$$

is the curvature on $T^*M \otimes L^k$. Now, $i_{\overline{e^i}}\overline{e^j} \wedge \cdots$ maps $\overline{e^i} \mapsto 0$ and is the identity on other terms when i = j and, when $i \neq j$, sends $\overline{e^i}$ to $-\overline{e^j}$ and other terms to 0. Similarly, $\overline{e^j} \wedge (i_{\overline{e_i}} \cdot)$ sends $\overline{e^i}$ to $\overline{e^j}$ and maps the other terms to zero. Thus,

(5)
$$\overline{\Box}_{k}\alpha = -\sum_{i} \nabla_{e_{i}} \nabla_{\overline{e_{i}}}\alpha + \sum_{i,j} \overline{e^{j}} \wedge i_{\overline{e_{i}}}(R(e_{i},\overline{e_{j}})\alpha)$$
$$= D\alpha + R\alpha + \sum_{i} \overline{e^{i}} \wedge i_{\overline{e_{i}}}(k\alpha) = D\alpha + R\alpha + k\alpha$$

Here, D is a semipositive operator, as $\int_M \langle D\alpha, \alpha \rangle = \int_M \left| \overline{\partial} \alpha \right|^2 \ge 0$, while R has order 0 and is independent of k. Thus,

(6)
$$\int \langle \overline{\Box}_k \alpha, \alpha \rangle \operatorname{vol}_0 = \int \langle D\alpha, \alpha \rangle + \int \langle R\alpha, \alpha \rangle + \int k |\alpha|^2 \ge 0 - C ||\alpha||_{L^2}^2 + k ||\alpha||_{L^2}^2$$

for some constant C. If k > C, then Ker $\overline{\Box}_k = 0$ and (by self-adjointness under L^2) Coker $\overline{\Box}_k = 0$, so $\overline{\Box}_k$ is invertible. Furthermore, the smallest eigenvalue of $\overline{\Box}_k$ is $\geq k - C$, so $\overline{\Box}_k$ admits an inverse G with norm $\leq \frac{1}{k-C} \leq \mathcal{O}(\frac{1}{k})$.

Finally, given $s \in C^{\infty}(L^k)$, let $\xi = -\overline{\partial}^* G \overline{\partial} s$.

(1) $s + \xi$ is holomorphic:

(7)

$$\overline{\partial}^{\nabla}(s+\xi) = \overline{\partial}s - \overline{\partial}\overline{\partial}^* G \overline{\partial}s = (\overline{\Box}_k - \overline{\partial}\overline{\partial}^*) G \overline{\partial}s = \overline{\partial}^* \overline{\partial} G \overline{\partial}s$$

But Im $\overline{\partial} \cap$ Im $\overline{\partial}^* = \{0\}$, since $\overline{\partial} a = \overline{\partial}^* b \implies ||\overline{\partial} a||_{L^2}^2 = \langle \overline{\partial} a, \overline{\partial}^* b \rangle_{L^2} = \langle \overline{\partial} \overline{\partial} a, b \rangle_{L^2} = 0$. Thus, $\overline{\partial}(s+\xi) = 0$ as desired.

$$(2) ||\xi||_{L^{2}}^{2} = \leq \mathcal{O}(\frac{1}{k}) ||\overline{\partial}s||_{L^{2}}^{2}:$$

$$(8) \qquad \qquad \left|\left|\overline{\partial}^{*}G\overline{\partial}s\right|\right|_{L^{2}}^{2} = \langle\overline{\partial}^{*}G\overline{\partial}s, \overline{\partial}^{*}G\overline{\partial}s\rangle_{L^{2}} = \langle\overline{\partial}\overline{\partial}^{*}G\overline{\partial}s, G\overline{\partial}s\rangle_{L^{2}}$$

$$= \langle\overline{\partial}s, G\overline{\partial}s\rangle_{L^{2}} \leq ||G|| \left|\left|\overline{\partial}s\right|\right|_{L^{2}}^{2} \leq \mathcal{O}(\frac{1}{k}) \left|\left|\overline{\partial}s\right|\right|_{L^{2}}^{2}$$

1. Counterexamples

We know now that K ahler \implies complex and symplectic, while both imply the existence of an almost-complex structure, and the latter implies that the manifold is even-dimensional and orientable. In dimension 2, these are all the same: in dimension 4, all these inclusions are strict (even when restricting to compact manifolds).

Example. • S^4 is even-dimensional and orientable, but not almost-complex: if it were, $c_1(TS^4, J) \in H^2(S^4, \mathbb{Z}) = 0$ would satisfy $c_1^2 \cdot [S^4] = 2c_2 - p_1 = 2\chi + 3\sigma$ (with χ the Euler characteristic and σ the signature), which is impossible. Similarly, $\mathbb{CP}^2 \#\mathbb{CP}^2$ is not almost-complex:

$$c_1 = (a,b) \in H^2 \cong \mathbb{Z}^2 \implies c_1^2 \cdot [\mathbb{CP}^2 \# \mathbb{CP}^2] = a^2 + b^2 \neq 2\chi + 3\sigma = 14$$

which is again impossible.

- $\mathbb{CP}^2 \# \mathbb{CP}^2 \# \mathbb{CP}^2$ is almost-complex, but not symplectic or complex: Ehresman-Wu implies that $\exists J$ with $c_1 = c \in H^2(M, \mathbb{Z}) \Leftrightarrow c^2 \cdot [M] = 2\chi + 3\sigma$ and $\forall x \in H_2, \langle c, x \rangle \equiv Q(x, x) \mod 2$. In our case, $\chi = 5$ and $\sigma = 3$, so the calculation works out. By the Kodaira classification of surfaces, if it were complex it would be Kähler; by Taubes' (1995) theorem on Seiberg-Witten invariants, it is not symplectic.
- The Hopf surface $S^3 \times S^1 \cong (\mathbb{C}^2 \setminus \{0\})/\mathbb{Z}$ is complex (Z-action $(z_1, z_2) \mapsto (\lambda^n z_1, \lambda^n z_2)$ is holomorphic) but not symplectic $(H^2 = 0)$.
- Not all symplectic manifolds have complex structure (compatible or otherwise). For the former case, we have examples of torus bundles over tori; for the latter case, we have the following theorem.

Theorem 1 (Gompf 1994). $\forall G$ finitely presented group, $\exists M^4$ compact, symplectic, but not complex with $\pi_1(M^4) \cong F$.

This construction is obtained by performing symplectic sums along codimension 2 symplectic submanifolds. Since

$$H_1(M,\mathbb{Z}) = \operatorname{Ab}(\pi_1(M)) = \operatorname{Ab}(G) = G/[G,G]$$

M is not K ahler if this has odd rank (since $H^1 \cong H^{1,0} \oplus H^{0,1}$, with the two parts having the same rank). Using the Kodaira classification, one can arrange to obtain non-complex manifolds as well. • The Kodaira-Thurston manifold $M = \mathbb{R}^4 / \Gamma$, where Γ is the discrete group generated by

(11) $g_{1}: (x_{1}, x_{2}, x_{3}, x_{4}) \mapsto (x_{1} + 1, x_{2}, x_{3}, x_{4})$ $g_{2}: (x_{1}, x_{2}, x_{3}, x_{4}) \mapsto (x_{1}, x_{2} + 1, x_{3} + x_{4}, x_{4})$ $g_{3}: (x_{1}, x_{2}, x_{3}, x_{4}) \mapsto (x_{1}, x_{2}, x_{3} + 1, x_{4})$ $g_{4}: (x_{1}, x_{2}, x_{3}, x_{4}) \mapsto (x_{1}, x_{2}, x_{3}, x_{4} + 1)$

is complex and symplectic, but not Kähler. Note that $\Gamma \subset \text{Symp}(\mathbb{R}^4, \omega_0)$ (obvious for the three translations, while $g_2^*\omega_0 = dx_1 \wedge d(x_2+1) + d(x_3+x_4) \wedge dx_4 = dx_1 \wedge dx_2 + dx_3 \wedge dx_4$ as desired), so M is symplectic. M is also a symplectic T^2 bundle over T^2 , with the base given by x_1, x_2 and the fiber by x_3, x_4 (with the bundle trivial along the x_1 direction, nontrivial along the x_2 direction with monodromy $(x_3, x_4) \mapsto (x_3 + x_4, x_4)$).

(9)

(10)