SYMPLECTIC GEOMETRY, LECTURE 20

Prof. Denis Auroux

Recall from last time the statement of the following lemma: given L a holomorphic line bundle with curvature $-i \omega$,

Lemma 1. $\forall s \in C^{\infty}\left(L^{\otimes k}\right), \exists \xi \in C^{\infty}\left(L^{\otimes k}\right)$ st. $\|\xi\|_{L^{2}} \leq \frac{C}{\sqrt{k}}\|\bar{\partial} s\|_{L^{2}}$ and $s+\xi$ is holomorphic.
Proof. For this, we use the Weitzenbock formula for

$$
\begin{equation*}
\bar{\square}_{k}=\overline{\partial \bar{\partial}}^{*}+\bar{\partial}^{*} \bar{\partial}: \Omega^{0,1}\left(L^{\otimes k}\right) \circlearrowleft \tag{1}
\end{equation*}
$$

where $\bar{\partial}$ is induced by ∇ on $L^{\otimes k}$. We fix $p \in M$ and work in a neighborhood with p identified with the origin, choosing a standard frame for $T_{p} M \cong \mathbb{C}^{n}$ with $e_{i}=\frac{\partial}{\partial z_{i}}$ an orthonormal frame of $T^{1,0}, e^{i}=d z_{i}$ the dual frame. Using parallel transport w.r.t. the Levi-Cevita connection in the radial directions, we still have these frames (though they are no longer given by coordinates). At the origin, moreover, we have $\nabla_{e_{i}} e_{j}=0$. Now,

$$
\begin{equation*}
\bar{\partial} \alpha=\sum_{i} \overline{e^{i}} \wedge \nabla_{\overline{e_{i}}} \alpha, \bar{\partial}^{*} \alpha=-\sum_{i} i_{\overline{e_{i}}}\left(\nabla_{e_{i}} \alpha\right) \tag{2}
\end{equation*}
$$

so at the origin

$$
\begin{equation*}
\bar{\square}_{k} \alpha=-\sum_{i, j} i_{\overline{e_{i}}}\left(\overline{e^{j}} \wedge \nabla_{e_{i}} \nabla_{\overline{e_{j}}} \alpha\right)-\sum_{i, j} \overline{e^{j}} \wedge\left(i_{\overline{e_{i}}} \nabla_{\overline{e_{j}}} \nabla_{e_{i}} \alpha\right) \tag{3}
\end{equation*}
$$

Note that $\nabla_{\overline{e_{j}}} \nabla_{e_{i}} \alpha=\nabla_{e_{i}} \nabla_{\overline{e_{j}}} \alpha-R\left(e_{i}, \overline{e_{j}}\right) \alpha$, where

$$
\begin{equation*}
R=R^{T^{*} M} \otimes \operatorname{id}_{L^{k}}+\mathrm{id}_{T^{*} M} \otimes R^{L^{k}} \tag{4}
\end{equation*}
$$

is the curvature on $T^{*} M \otimes L^{k}$. Now, $i \overline{e^{i}} \overline{e^{j}} \wedge \cdot \operatorname{maps} \overline{e^{i}} \mapsto 0$ and is the identity on other terms when $i=j$ and, when $i \neq j$, sends $\overline{e^{i}}$ to $-\overline{e^{j}}$ and other terms to 0 . Similarly, $\overline{e^{j}} \wedge\left(i_{\overline{e_{i}}} \cdot\right)$ sends $\overline{e^{i}}$ to $\overline{e^{j}}$ and maps the other terms to zero. Thus,

$$
\begin{align*}
\bar{\square}_{k} \alpha & =-\sum_{i} \nabla_{e_{i}} \nabla_{\overline{e_{i}}} \alpha+\sum_{i, j} \overline{e^{j}} \wedge i_{\overline{e_{i}}}\left(R\left(e_{i}, \overline{e_{j}}\right) \alpha\right) \tag{5}\\
& =D \alpha+R \alpha+\sum_{i} \overline{e^{i}} \wedge i_{\overline{\bar{e}_{i}}}(k \alpha)=D \alpha+R \alpha+k \alpha
\end{align*}
$$

Here, D is a semipositive operator, as $\int_{M}\langle D \alpha, \alpha\rangle=\int_{M}|\bar{\partial} \alpha|^{2} \geq 0$, while R has order 0 and is independent of k. Thus,

$$
\begin{equation*}
\int\left\langle\bar{\square}_{k} \alpha, \alpha\right\rangle \operatorname{vol}_{0}=\int\langle D \alpha, \alpha\rangle+\int\langle R \alpha, \alpha\rangle+\int k|\alpha|^{2} \geq 0-C\|\alpha\|_{L^{2}}^{2}+k\|\alpha\|_{L^{2}}^{2} \tag{6}
\end{equation*}
$$

for some constant C. If $k>C$, then $\operatorname{Ker} \bar{\square}_{k}=0$ and (by self-adjointness under L^{2}) Coker $\bar{\square}_{k}=0$, so $\bar{\square}_{k}$ is invertible. Furthermore, the smallest eigenvalue of $\bar{\square}_{k}$ is $\geq k-C$, so $\bar{\square}_{k}$ admits an inverse G with norm $\leq \frac{1}{k-C} \leq \mathcal{O}\left(\frac{1}{k}\right)$.

Finally, given $s \in C^{\infty}\left(L^{k}\right)$, let $\xi=-\bar{\partial}^{*} G \bar{\partial} s$.
(1) $s+\xi$ is holomorphic:

$$
\begin{equation*}
\bar{\partial}^{\nabla}(s+\xi)=\bar{\partial} s-\overline{\partial \partial}^{*} G \bar{\partial} s=\left(\bar{\square}_{k}-\overline{\partial \bar{\partial}}^{*}\right) G \bar{\partial} s=\bar{\partial}^{*} \bar{\partial} G \bar{\partial} s \tag{7}
\end{equation*}
$$

But $\operatorname{Im} \bar{\partial} \cap \operatorname{Im} \bar{\partial}^{*}=\{0\}$, since $\bar{\partial} a=\bar{\partial}^{*} b \quad \Longrightarrow \quad\|\bar{\partial} a\|_{L^{2}}^{2}=\left\langle\bar{\partial} a, \bar{\partial}^{*} b\right\rangle_{L^{2}}=\langle\overline{\partial \partial} a, b\rangle_{L^{2}}=0$. Thus, $\bar{\partial}(s+\xi)=0$ as desired.
(2) $\|\xi\|_{L^{2}}^{2}=\leq \mathcal{O}\left(\frac{1}{k}\right)\|\bar{\partial} s\|_{L^{2}}^{2}$:

$$
\begin{align*}
\left\|\bar{\partial}^{*} G \bar{\partial} s\right\|_{L^{2}}^{2} & =\left\langle\bar{\partial}^{*} G \bar{\partial} s, \bar{\partial}^{*} G \bar{\partial} s\right\rangle_{L^{2}}=\left\langle\overline{\partial \partial^{*}} G \bar{\partial} s, G \bar{\partial} s\right\rangle_{L^{2}} \tag{8}\\
& =\langle\bar{\partial} s, G \bar{\partial} s\rangle_{L^{2}} \leq\|G\|\|\bar{\partial} s\|_{L^{2}}^{2} \leq \mathcal{O}\left(\frac{1}{k}\right)\|\bar{\partial} s\|_{L^{2}}^{2}
\end{align*}
$$

1. Counterexamples

We know now that K ahler \Longrightarrow complex and symplectic, while both imply the existence of an almost-complex structure, and the latter implies that the manifold is even-dimensional and orientable. In dimension 2, these are all the same: in dimension 4, all these inclusions are strict (even when restricting to compact manifolds).
Example. - S^{4} is even-dimensional and orientable, but not almost-complex: if it were, $c_{1}\left(T S^{4}, J\right) \in$ $H^{2}\left(S^{4}, \mathbb{Z}\right)=0$ would satisfy $c_{1}^{2} \cdot\left[S^{4}\right]=2 c_{2}-p_{1}=2 \chi+3 \sigma$ (with χ the Euler characteristic and σ the signature), which is impossible. Similarly, $\mathbb{C P}^{2} \# \mathbb{C P}^{2}$ is not almost-complex:

$$
c_{1}=(a, b) \in H^{2} \cong \mathbb{Z}^{2} \Longrightarrow c_{1}^{2} \cdot\left[\mathbb{C P}^{2} \# \mathbb{C P}^{2}\right]=a^{2}+b^{2} \neq 2 \chi+3 \sigma=14
$$

which is again impossible.

- $\mathbb{C P}^{2} \# \mathbb{C P}^{2} \# \mathbb{C P}^{2}$ is almost-complex, but not symplectic or complex: Ehresman-Wu implies that $\exists J$ with $c_{1}=c \in H^{2}(M, \mathbb{Z}) \Leftrightarrow c^{2} \cdot[M]=2 \chi+3 \sigma$ and $\forall x \in H_{2},\langle c, x\rangle \equiv Q(x, x) \bmod 2$. In our case, $\chi=5$ and $\sigma=3$, so the calculation works out. By the Kodaira classification of surfaces, if it were complex it would be Kähler; by Taubes' (1995) theorem on Seiberg-Witten invariants, it is not symplectic.
- The Hopf surface $S^{3} \times S^{1} \cong\left(\mathbb{C}^{2} \backslash\{0\}\right) / \mathbb{Z}$ is complex (\mathbb{Z}-action $\left(z_{1}, z_{2}\right) \mapsto\left(\lambda^{n} z_{1}, \lambda^{n} z_{2}\right)$ is holomorphic) but not symplectic ($H^{2}=0$).
- Not all symplectic manifolds have complex structure (compatible or otherwise). For the former case, we have examples of torus bundles over tori; for the latter case, we have the following theorem.
Theorem 1 (Gompf 1994). $\forall G$ finitely presented group, $\exists M^{4}$ compact, symplectic, but not complex with $\pi_{1}\left(M^{4}\right) \cong F$.

This construction is obtained by performing symplectic sums along codimension 2 symplectic submanifolds. Since

$$
\begin{equation*}
H_{1}(M, \mathbb{Z})=\operatorname{Ab}\left(\pi_{1}(M)\right)=\operatorname{Ab}(G)=G /[G, G] \tag{10}
\end{equation*}
$$

M is not K ahler if this has odd rank (since $H^{1} \cong H^{1,0} \oplus H^{0,1}$, with the two parts having the same rank). Using the Kodaira classification, one can arrange to obtain non-complex manifolds as well.

- The Kodaira-Thurston manifold $M=\mathbb{R}^{4} / \Gamma$, where Γ is the discrete group generated by

$$
\begin{align*}
& g_{1}:\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \mapsto\left(x_{1}+1, x_{2}, x_{3}, x_{4}\right) \\
& g_{2}:\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \mapsto\left(x_{1}, x_{2}+1, x_{3}+x_{4}, x_{4}\right) \\
& g_{3}:\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \mapsto\left(x_{1}, x_{2}, x_{3}+1, x_{4}\right) \tag{11}\\
& g_{4}:\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \mapsto\left(x_{1}, x_{2}, x_{3}, x_{4}+1\right)
\end{align*}
$$

is complex and symplectic, but not Kähler. Note that $\Gamma \subset \operatorname{Symp}\left(\mathbb{R}^{4}, \omega_{0}\right)$ (obvious for the three translations, while $g_{2}^{*} \omega_{0}=d x_{1} \wedge d\left(x_{2}+1\right)+d\left(x_{3}+x_{4}\right) \wedge d x_{4}=d x_{1} \wedge d x_{2}+d x_{3} \wedge d x_{4}$ as desired), so M is symplectic. M is also a symplectic T^{2} bundle over T^{2}, with the base given by x_{1}, x_{2} and the fiber by x_{3}, x_{4} (with the bundle trivial along the x_{1} direction, nontrivial along the x_{2} direction with monodromy $\left.\left(x_{3}, x_{4}\right) \mapsto\left(x_{3}+x_{4}, x_{4}\right)\right)$.

