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SYMPLECTIC GEOMETRY, LECTURE 20 

Prof. Denis Auroux 

Recall from last time the statement of the following lemma: given L a holomorphic line bundle with curvature 
−iω, 

Lemma 1. ∀s ∈ C∞(L⊗k), ∃ξ ∈ C∞(L⊗k) st. ||ξ||L2 ≤ √C
k 

∂s 
L2 and s + ξ is holomorphic. 

Proof. For this, we use the Weitzenbock formula for 

(1)	 �k = ∂∂
∗ 

+ ∂
∗
∂ : Ω0,1(L⊗k) � 

where ∂ is induced by � on L⊗k . We fix p ∈ M and work in a neighborhood with p identified with the origin, 
choosing a standard frame for Tp = Cn with ei = ∂ an orthonormal frame of T 1,0 , ei = dzi the dual frame. M ∼ ∂zi 

Using parallel transport w.r.t. the Levi-Cevita connection in the radial directions, we still have these frames 
(though they are no longer given by coordinates). At the origin, moreover, we have �ei 

ei ∧�ei α, ∂
∗
α = − iei (�ei α) 

ej = 0. Now, 

∂α =(2) 
i i 

so at the origin � � 
(3)	 �kα = − iei (ej ∧�ei �ej α) − ej ∧ (iei �ej �ei α) 

i,j i,j 

Note that �ej �ei α = �ei �ej α − R(ei, ej )α, where 

(4)	 R = RT ∗M ⊗ idLk + idT ∗M ⊗ RLk 

is the curvature on T ∗M ⊗ Lk . Now, i 
ei ej ∧ · maps ei �→ 0 and is the identity on other terms when i = j and, 

when i =� j, sends ei to −ej and other terms to 0. Similarly, ej ∧ (iei ·) sends ei to ej and maps the other terms 
to zero. Thus, 

�kα = − �ei �ei α + ej ∧ iei (R(ei, ej )α) 
i i,j

(5) 
= Dα + Rα + ei ∧ iei (kα) = Dα + Rα + kα 

i 

2
Here, D is a semipositive operator, as 
Thus, 

≥ 0, while R has order 0 and is independent of k.
M �Dα, α� = ∂α 

M 

(6) ��kα, α�vol0 = �Dα, α� + �Rα, α� + k |α| 2 ≥ 0 − C ||α|| 2 + k ||α|| 2 
L2 L2 

for some constant C. If k > C, then Ker �k = 0 and (by self-adjointness under L2) Coker �k = 0, so �k 

is invertible. Furthermore, the smallest eigenvalue of �k is ≥ k − C, so �k admits an inverse G with norm 

k≤ k−
1 
C ≤ O( 1 ). 

Finally, given s ∈ C∞(Lk), let ξ = −∂
∗
G∂s. 

(1) s + ξ is holomorphic: 

∂
�

(s + ξ) = ∂s − ∂∂
∗
G∂s = (�k − ∂∂

∗
)G∂s = ∂

∗
∂G∂s 

2 

(7) 

But Im ∂ ∩ Im ∂
∗ 

= {0}, since ∂a = ∂
∗
b 

∂(s + ξ) = 0 as desired. 
�∂a, ∂

∗
b�L2 = �∂∂a, b�L2 = 0. Thus, ∂a = = 

L2⇒ 

1 
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(2) ||ξ|| 2 )L2 =≤ O( k 
1 2 

L2 :∂s 
2 

∂
∗
G∂s = �∂∗G∂s, ∂

∗
G∂s�L2 = �∂∂

∗
G∂s, G∂s�L2 

(8)	 L2 

∂s 
2 1 

) ∂s 
2 ≤ O(= �∂s, G∂s�L2 ≤ ||G|| 

L2 L2k 

1. Counterexamples 

We know now that K ahler = complex and symplectic, while both imply the existence of an almost-complex ⇒
structure, and the latter implies that the manifold is even-dimensional and orientable. In dimension 2, these 
are all the same: in dimension 4, all these inclusions are strict (even when restricting to compact manifolds). 

Example. S4 is even-dimensional and orientable, but not almost-complex: if it were, c1(TS4, J) ∈• 
H2(S4 , Z) = 0 would satisfy c2 [S4] = 2c2 − p1 = 2χ + 3σ (with χ the Euler characteristic and σ the 1 · 
signature), which is impossible. Similarly, CP2#CP2 is not almost-complex: 

(9) c1 = (a, b) ∈ H2 ∼ = ⇒ 2 [CP2#CP2] = a 2 + b2 = 2� χ + 3σ = 14 = Z2 c1 · 

which is again impossible. 
•	 CP2#CP2#CP2 is almost-complex, but not symplectic or complex: Ehresman-Wu implies that ∃J with 

c1 = c ∈ H2(M, Z) ⇔ c2 · [M ] = 2χ + 3σ and ∀x ∈ H2, �c, x� ≡ Q(x, x) mod 2. In our case, χ = 5 
and σ = 3, so the calculation works out. By the Kodaira classification of surfaces, if it were complex it 
would be K̈ahler; by Taubes’ (1995) theorem on Seiberg-Witten invariants, it is not symplectic. 

•	 The Hopf surface S3 × S1 ∼ z1, λ
n= (C2 � {0})/Z is complex (Z-action (z1, z2) �→ (λn z2) is holomorphic) 

but not symplectic (H2 = 0). 
•	 Not all symplectic manifolds have complex structure (compatible or otherwise). For the former case, we 

have examples of torus bundles over tori; for the latter case, we have the following theorem. 

Theorem 1 (Gompf 1994). ∀G finitely presented group, ∃M4 compact, symplectic, but not complex 
with π1(M4) ∼= F . 

This construction is obtained by performing symplectic sums along codimension 2 symplectic sub-
manifolds. Since 

(10)	 H1(M, Z) = Ab(π1(M )) = Ab(G) = G/[G, G] 

M is not K ahler if this has odd rank (since H1 = H1,0 ⊕ H0,1, with the two parts having the same ∼
rank). Using the Kodaira classification, one can arrange to obtain non-complex manifolds as well. 

•	 The Kodaira-Thurston manifold M = R4/Γ, where Γ is the discrete group generated by


g1 : (x1, x2, x3, x4) �→ (x1 + 1, x2, x3, x4)


g2 : (x1, x2, x3, x4) �→ (x1, x2 + 1, x3 + x4, x4)

(11) 

g3 : (x1, x2, x3, x4) �→ (x1, x2, x3 + 1, x4) 

g4 : (x1, x2, x3, x4) �→ (x1, x2, x3, x4 + 1) 

is complex and symplectic, but not K¨ahler. Note that Γ ⊂ Symp(R4, ω0) (obvious for the three trans
lations, while g2 

∗ω0 = dx1 ∧ d(x2 + 1) + d(x3 + x4) ∧ dx4 = dx1 ∧ dx2 + dx3 ∧ dx4 as desired), so M is 
symplectic. M is also a symplectic T 2 bundle over T 2, with the base given by x1, x2 and the fiber by 
x3, x4 (with the bundle trivial along the x1 direction, nontrivial along the x2 direction with monodromy 
(x3, x4) �→ (x3 + x4, x4)). 


