SYMPLECTIC GEOMETRY, LECTURE 19

Prof. Denis Auroux

We now return to the complex Kähler case. Let (M, ω, J) be a complex Kähler manifold.
Proposition 1 (Donaldson). \exists a family of sections $\left(\sigma_{k, p}\right)_{k>k_{0}, p \in M}$ which is uniformly bounded and almostholomorphic, uniformly concentrated, and satisfies $\left|\sigma_{k, p}\right| \geq c>0$ on $B\left(p, k^{-1 / 2}\right)$. Furthermore, \exists a family of holomorphic sections $\left(\tilde{\sigma}_{k, p}\right)$ with $\sup \left|\sigma_{k, p}-\tilde{\sigma}_{k, p}\right|, \sup \left(k^{1 / 2}\left|\nabla \sigma_{k, p}-\nabla \tilde{\sigma}_{k, p}\right|\right) \leq O\left(\exp \left(-\lambda k^{1 / 3}\right)\right)$. That is, the $\tilde{\sigma}_{k, p}$ are so close to $\sigma_{k, p}$ that they're interchangeable in practice.

Proof. Fix $p \in M$ and holomorphic coordinates $(M, p) \rightarrow\left(\mathbb{C}^{n}, 0\right)$ (not necessarily Darboux). We can choose the coordinates to be isometric at the origin.
(1) Let u be a local section of L near p which is holomorphic and s.t. $|u(x)|=1$ (e.g. $u \equiv 1$ in a holomorphic trivialization). Then

$$
\begin{equation*}
\bar{\partial} \partial \log |u|^{2}=\bar{\partial}\left(u^{-1} \partial^{\nabla} u\right)=u^{-1} \bar{\partial}^{\nabla} \partial^{\nabla} u=R^{1,1}=-i \omega \tag{1}
\end{equation*}
$$

with the third equality coming from $\left(R^{\nabla}\right)^{1,1}=\bar{\partial}^{\nabla} \partial^{\nabla}+\partial^{\nabla} \bar{\partial}^{\nabla}=\left(R^{\nabla}\right)^{1,1}$ and $\bar{\partial}^{\nabla} u=0$. In local coordinates, we can write

$$
\begin{equation*}
\log |u|^{2}=\sum_{j}\left(f_{j} z_{j}+\bar{f}_{j} \bar{z}_{j}\right)+\sum_{i j}\left(g_{i j} z_{i} \bar{z}_{j}+h_{i j} z_{i} z_{j}+\bar{h}_{j k} \bar{z}_{i} \bar{z}_{j}\right)+O\left(|z|^{3}\right) \tag{2}
\end{equation*}
$$

Replacing u by $\exp \left(\sum-f_{j} z_{j}-\sum h_{i j} z_{i} z_{j}\right) u$ (which preserves holomorphicity), we can assume $\log |u|^{2}=$ $\sum g_{i j} z_{i} \overline{z_{j}}+O\left(|z|^{3}\right) . \bar{\partial} \partial \log |u|^{2}=-i \omega \Longrightarrow\left(g_{i j}\right)=-\frac{1}{2}$ (metric tensor on $\left.T_{x} M\right) \Longrightarrow \log |u|^{2}=-\frac{1}{2}|z|^{2}+$ $O\left(|z|^{3}\right)$. Hence u^{k} is a local holomorphic section of $L^{\otimes k},\left|u^{k}\right|=\exp \left(-\frac{k}{4}|z|^{2}+k O\left(|z|^{3}\right)\right)$. Estimating the growth of derivatives of $\log |u|^{2}$ gives us uniform concentratedness estimates as long as $|z| \ll 1$ (which is fine since the "support" of $u^{k} \sim$ a ball of radius $\left.\frac{1}{\sqrt{k}}\right)$. Then let $\sigma_{k, p}(q)=\chi_{k}(\operatorname{dist}(p, q)) u(q)^{k}$, where χ_{k} is a smooth cut-off function at distance $\sim k^{-1 / 3}$ (i.e. $\chi_{k} \equiv 1$ inside the ball of radius $k^{-1 / 3}$ and 0 outside a larger ball).

Note that the cutoff occurs in the region where $|z| \sim k^{-1 / 3}$ i.e. $\left|u^{k}\right| \sim \exp \left(-k \frac{|z|^{2}}{4}\right) \sim \exp \left(-k^{1 / 3}\right)$. Thus we get sup $\left|\bar{\partial} \sigma_{k, p}\right|=\sup \left|u^{k} \bar{\partial}\left(\chi_{k}\right)\right| \leq O\left(\exp \left(-\lambda k^{1 / 3}\right)\right)$ since $\bar{\partial} \chi_{k} \equiv 0$ except for $|z| \sim k^{-1 / 3}$ and $\left|\bar{\partial} \chi_{k}\right| \leq k^{1 / 3}$.
(2) To obtain the $\tilde{\sigma}_{k, p}$, we use the following lemma:

Lemma 1. $\forall s \in \Gamma\left(L^{\otimes k}\right), \exists \xi \in \Gamma\left(L^{\otimes k}\right)$ s.t. $\|\xi\|_{L^{2}} \leq \frac{c}{\sqrt{k}}\|\bar{\partial} s\|_{L^{2}}$ and $s+\xi$ is holomorphic.
We apply this lemma to $\sigma_{k, p}$ and obtain $\|\xi\|_{L^{2}} \leq \frac{c}{\sqrt{k}}\left\|\bar{\partial} \sigma_{k, p}\right\|_{L^{2}} \leq O\left(k^{-2 n / 3-1 / 2} \exp \left(-\lambda k^{-1 / 3}\right)\right)$, where the L^{2} estimate on $\bar{\partial} \sigma_{k, p}$ follows from the pointwise bound and the observation that it is supported in a ball of volume $\sim k^{-2 n / 3}$. To get a pointwise C^{r}-estimate on ξ, we use a Cauchy estimate expressing values of holomorphic functions at q by integrals over balls containing q. At points inside $B\left(p, k^{-1 / 3}\right)$, $\chi=1$ so $\sigma_{k, p}$ is holomorphic there, as is ξ, and $\|\xi\|_{C^{r}}$ is controlled by $\|\xi\|_{L^{2}} \sim \exp \left(-\lambda k^{1 / 3}\right)$ on $B\left(k^{-1 / 3}\right)$. Finally, the Cauchy estimates for $\sigma_{k, p}+\xi$ imply that $\left\|\sigma_{k, p}+\xi\right\|_{C^{r}}$ is also controlled by the local L^{2} norm and thus also bounded by $\exp \left(-\lambda k^{1 / 3}\right)$ outside of $B\left(p, k^{-1 / 3}\right)$ as desired.

Proof of Lemma. We use the operator $\Delta_{k}=\bar{\partial}_{L^{k}}^{*} \bar{\partial}_{L^{k}}+\bar{\partial}_{L^{k}} \bar{\partial}_{L^{k}}^{*}: \Omega^{0,1}\left(L^{\otimes k}\right) \rightarrow \Omega^{0,1}\left(L^{\otimes k}\right)$. We estimate via a Weitzenböck formula: fixing a tangent frame e_{i} of $T^{1,0}, e^{i}$ the dual frame, we have

$$
\begin{align*}
\bar{\partial} \alpha & =\sum_{i} \overline{e^{i}} \wedge \nabla_{\overline{e_{i}}} \alpha \\
\bar{\partial}^{*} \alpha & =-\sum_{i} g\left(e^{i}, \overline{e^{j}}\right) i_{\overline{e_{j}}}\left(\nabla_{e_{i}} \alpha\right) \tag{3}
\end{align*}
$$

Take a frame that's orthonormal at the origin, and radially parallel transport so $\nabla_{e_{i}} e_{j}=0$ at the origin; this preserves type $(1,0)$ forms since J is integrable. Then

$$
\begin{align*}
\Delta_{k} \alpha & =-\sum_{i j} i_{\overline{e_{i}}}\left(\overline{e_{j}} \wedge \nabla_{e_{i}} \nabla_{\overline{e_{j}}} \alpha\right)-\sum_{i j} \overline{e^{j}} \wedge\left(i_{\overline{e_{i}}} \nabla_{\overline{e_{j}}} \nabla_{e_{i}} \alpha\right) \\
& =\sum_{i}-\nabla_{e_{i}} \nabla_{\overline{e_{i}}} \alpha+\sum_{i j} \overline{e^{j}} \wedge i_{\overline{e_{i}}}\left(R^{T^{*} M \otimes L^{k}}\left(e_{i}, \overline{e_{k}}\right) \alpha\right) \tag{4}\\
& =D \alpha+R \alpha+k \alpha
\end{align*}
$$

because at the origin $R^{L^{k}}\left(e_{i}, \overline{e_{j}}\right)=-i k \omega\left(e_{i}, \overline{e_{j}}\right)=k \delta_{i j}$. D is semipositive, since $\langle D \alpha, \alpha\rangle=\sum\left\|\nabla_{\overline{e_{i}}} \alpha\right\|^{2}+$ d (something) $\Longrightarrow \int_{M}\langle D \alpha, \alpha\rangle \geq 0$. Therefore, for k large enough, Δ_{k} is invertible and \exists an inverse G of norm $O\left(\frac{1}{k}\right)$.

Given $s \in \Gamma\left(L^{k}\right)$, set $\xi=-\bar{\partial}^{*} G \bar{\partial} s$. Then
(1) $(s+\xi)$ is holomorphic since

$$
\begin{equation*}
\bar{\partial}(s+\xi)=\bar{\partial} s-\overline{\partial \bar{\partial}}^{*} G \bar{\partial} s=\bar{\partial} s-\left(\Delta_{k}-\bar{\partial}^{*} \bar{\partial}\right) G \bar{\partial} s=\bar{\partial}^{*} \bar{\partial} G \bar{\partial} s \tag{5}
\end{equation*}
$$

but $\operatorname{Im} \bar{\partial} \cap \operatorname{Im} \bar{\partial}^{*}=0$ by Hodge theory, so $\bar{\partial}(s+\xi)=0$.
(2) $\|\xi\|_{L^{2}}^{2}=\left\langle\bar{\partial}^{*} G \bar{\partial} s, \bar{\partial}^{*} G \bar{\partial} s\right\rangle=\left\langle\overline{\partial \partial}^{*} G \bar{\partial} s, G \bar{\partial} s\right\rangle=\langle\bar{\partial} s, G \bar{\partial} s\rangle \leq\|G\|\|\bar{\partial} s\|_{L^{2}}^{2} \leq c k^{-1}\|\bar{\partial} s\|_{L^{2}}^{2}$.

This completes the proof.
Going from these collections of sections to the Kodaira embedding is straightforward:

- Well-definedness: we need that $\forall p, \exists s \in H^{0}\left(L^{k}\right)$ s.t. $s(p) \neq 0$, which comes from the fact that $\left|\tilde{\sigma}_{k, p}(p)\right| \simeq$ $1 \neq 0$.
- Immersion: need that $\forall p \in M, v \in T_{p} M, \exists \sigma_{1}, \sigma_{2} \in H^{0}\left(L^{k}\right)$ s.t. $d_{v}\left(\frac{\sigma_{1}}{\sigma_{2}}\right) \neq 0$. This would give us a projection to a certain $\mathbb{C P}^{1}$ factor of $\mathbb{C P}^{n}$ which has nonzero derivative in the direction of v. We could do this by looking at $\tilde{\sigma}_{k, q_{ \pm}}, q_{ \pm}=\exp _{p}\left(\pm k^{-1 / 2} v\right)$. More simply, we set $\sigma_{2}=\tilde{\sigma}_{k, p}, \sigma_{1}$ obtained by a similar process starting from $z_{1} \sigma_{k, p}$ (rotating the coordinates so v is along the z_{1}-axis) and adding ξ perturbation to make it holomorphic. Then $\frac{\sigma_{1}}{\sigma_{2}}=z_{1}+\cdots \Longrightarrow d_{v}\left(\frac{\sigma_{1}}{\sigma_{2}}\right) \neq 0$.
- Injectivity: If p, q are at a distance $\ll k^{-1 / 3}$ then (using the above argument for immersiveness) the sections are different at p and q. If the distance is greater, $\left[\tilde{\sigma}_{k, p}: \tilde{\sigma}_{k, p}\right] \sim[1: 0]$ and $[0: 1]$ respectively.

