SYMPLECTIC GEOMETRY, LECTURE 18

Prof. Denis Auroux

Let (M, ω, J) be a compact Kähler manifold, $[\omega] \in H^{1,1}(M) \cap H^2(M, \mathbb{Z})$. Then we can find a line bundle $L \to M$ with first Chern class $c_1(L) = [\omega]$. Choose a Hermitian metric on L along with a Hermitian connection ∇ with $R^{\nabla} = -2\pi i \omega$. More explicitly, starting with any hermitian connection ∇ , R^{∇} is a closed imaginary 2-form: in a trivialization, $\nabla = d + A$, so $R^{\nabla} = dA + [A, A] = dA$. Thus,

(1)
$$[R^{\nabla}] = -2\pi i c_1(L) = -2\pi i [\omega] \implies \exists a \in \Omega^1(M) \text{ s.t. } R^{\nabla} = -2\pi i \omega + i da$$

Letting $\nabla' = \nabla - ia$, we find that $R' = R - ida = -2\pi i\omega$.

Next, recall that $\nabla^{0,1}$ defines a holomorphic structure on L iff $(R^{\nabla})^{0,2} = 0$. Since ω is a (1,1)-form and $R^{\nabla} = -2\pi i \omega$, we get a holomorphic line bundle structure for L. We will furthermore see that $L^{\otimes k}$ has "enough holomorphic sections", i.e. the number of such sections $\to \infty$. Given this, consider a basis of holomorphic sections $s_0, \ldots, s_N \in H^0(L)$ (or $H^0(L^{\otimes k})$). Assume that, $\forall p \in M, \exists s \in H^0(L)$ s.t. $s(p) \neq 0$. Then we can define a map

(2)
$$f: M \to \mathbb{CP}^n, p \to [s_0(x): \dots : s_N(x)]$$

More intrinsically, we obtain a map

(3)
$$M \to \mathbb{P}(H^0(L)^*), p \mapsto H_p = \{s \in H^0(L) | s(p) = 0\} \subset H^0(L)$$

Here, H_p is the kernel of the linear form given by evaluation at p, well-defined up to scaling.

Definition 1. L is very ample if $f: M \to \mathbb{P}(H^0(L)^*)$ is a well-defined embedding, and ample if $L^{\otimes k}$ is very ample for some k.

We can reformulate this using the Kodaira embedding theorem:

Theorem 1 (Kodaira). A holomorphic line bundle is ample \Leftrightarrow it has a holomorphic connection whose curvature is a Kähler form.

The traditional proof of the Kodaira embedding theorem requires the Kodaira vanishing theorem. Instead, we will prove this using Donaldson's argument. For simplicity, replace ω by $\frac{\omega}{2\pi}$, so $\left[\frac{\omega}{2\pi}\right] = c_1(L)$. We will explicitly construct holomorphic sections of $L^{\otimes k}$ for all k >> 0.

- First, fix $p \in M$, and choose local Darboux coordinates s.t. $\omega = \frac{i}{2} \sum dz_j \wedge d\overline{z_j}$ and $J = J_0 + \mathcal{O}(|z|)$ (we can't assume that J is the natural complex structure, because that would imply the Kähler metric was flat).
- Next, choose a unitary trivialization of $L^{\otimes k}$, so that ∇ corresponds to

(4)
$$d + iA_0 = d + \frac{k}{4} \sum z_j d\overline{z_j} - \overline{z_j} dz_j$$

To see that we can choose A in this way, note that, in any trivialization, $\nabla = d + iA$, so $-ik\omega = R = idA$. We have

(5)
$$idA_0 = \frac{k}{4} \sum dz_j \wedge d\overline{z_j} = -ik\omega_0 = idA$$

Thus, $A - A_0$ is closed and locally exact. Moreover, changing the trivialization by $f = e^{i\phi} \in C^{\infty}(U, U(1))$ changes the connection 1-form to $A' = A + d\phi$. Thus a suitable change of trivialization ensures that the connection form becomes iA_0 .

Prof. Denis Auroux

Remark. Baby model: assume $J = J_0$ in our coordinates (so that the Kähler metric is flat), and consider $s(z) = \exp(-\frac{k}{4}|z|^2)$: this function arises from considering the curvature

(6)
$$R^{1,1} = \partial^{\nabla}\overline{\partial}^{\nabla} + \overline{\partial}^{\nabla}\partial^{\nabla} = \overline{\partial}\partial\log|\sigma|^2$$

for σ a holomorphic section. We claim that s is holomorphic w.r.t. ∇ . To see this, note that

(7)
$$\nabla s = ds + iA_0s = \left(-\frac{k}{4}\sum z_j d\overline{z_j} + \overline{z_j} dz_j\right)s + \left(\frac{k}{4}\sum z_j d\overline{z_j} - \overline{z_j} dz_j\right)s = \frac{-k}{2}\left(\sum \overline{z_j} dz_j\right)s$$

so $\partial^* s = 0$ as desired.

• In our case,

(8)

(9)

$$J = J_0 + \mathcal{O}(|z|) \implies \left| \nabla s^{0,1} \right| = \mathcal{O}(|z| \cdot |\nabla s|) = \mathcal{O}(k |z|^2 \cdot |s|)$$

while

$$|\nabla s| = \mathcal{O}(k |z| |s|) \implies \frac{\sup |\nabla s^{0,1}|}{\sup |\nabla s|} = \mathcal{O}(\frac{1}{\sqrt{k}})$$

We say that s is "approximately holomorphic".

Definition 2. A family of sections $s_k \in C^{\infty}(L^{\otimes k})$ is uniformly bounded if it satisfies the uniform bounds

(10)
$$\sup_{x \in M} |\nabla^r s_k|_g \le C_r k^{\frac{r}{2}}$$

and approximately holomorphic if

(11)
$$\sup_{x \in M} \left| \nabla^{r-1} \overline{\partial} s_k \right|_g \le C_r k^{\frac{r-1}{2}}$$

for all r. Furthermore, s_k is uniformly concentrated at p if \exists a polynomial P and a constant $\lambda > 0$ s.t.

(12)
$$\forall x \in M, \left| \frac{1}{k^{t/2}} \nabla^t s(x) \right| \le P(\sqrt{k} d(p, x)) \exp(-\lambda k \operatorname{dist}(p, x)^2)$$

for $t \in \{0, ..., r\}$.

Proposition 1. If (M, ω) is a compact symplectic manifold with a compatible almost complex structure, then \exists a family of sections $(\sigma_{k,p})_{k>>0,p\in M}$ which are uniformly bounded, approximately holomorphic, uniformly concentrated, and $|\sigma_{k,p}| \ge c > 0$ over $B(p, \frac{1}{\sqrt{k}})$.

In the Kähler case, we also have the following approximation theorem.

Proposition 2. Given a family of sections $\{\sigma_{k,p}\}$ as above, $\exists \{\tilde{\sigma}_{k,p}\}$ holomorphic s.t.

(13)
$$\sup(k^{r/2} |\nabla^r \sigma_{k,p} - \nabla^r \tilde{\sigma}_{k,p}|) \le C e^{-\lambda k}$$

That is, any estimate you make via σ can also be applied to $\tilde{\sigma}$, so you can assume that your approximately holomorphic sections are holomorphic and obtain the desired embedding. To use these sections to prove Kodaira embedding, note that $\forall p \in M, \exists s \in H^0(L^{\otimes k})$ s.t. $s(p) \neq 0$ since $|\tilde{\sigma}_{k,p}(p)| \approx 1$ (that is, $L^{\otimes k}$ is base point free). Moreover, given $p \neq q \in M, \exists s, s' \in H^0(L^{\otimes k})$ s.t. |s(p)| > |s(q)| and |s'(p)| < |s'(q)|: e.g., if p, q are distant by more than $k^{-\frac{1}{2}}$ we can take $s = \tilde{\sigma}_{k,p}$ and $s' = \tilde{\sigma}_{k,q}$ (that is, our sections separate points). Finally, at every point $p, \forall v \in T_pM, \exists \sigma_1, \sigma_2 \in H^0(L^{\otimes k})$ s.t. $d_v(\frac{\sigma_1}{\sigma_2}) \neq 0$ (that is, our sections separate tangent vectors). This is done by choosing a local holomorphic coordinate so that $v = \operatorname{Re} \frac{\partial}{\partial z_1}$ and perturbing $z_1 \sigma_{k,p}$ to a holomorphic section; setting $\sigma_2 = \tilde{\sigma}_{k,p}$ gives the desired nonzero derivative.