SYMPLECTIC GEOMETRY, LECTURE 17

Prof. Denis Auroux

The Hodge decomposition stated last time places strong constraints on H^{*} of Kähler manifolds, e.g. dim H^{k} is even for k odd because \mathbb{C} conjugation gives isomorphisms $\overline{\mathcal{H}^{p, q}} \cong \mathcal{H}^{q, p}$ (note that this is false for symplectic manifolds in general). The Hodge star $*$ gives isomorphisms $\mathcal{H}^{p, q} \xrightarrow{\sim} \mathcal{H}^{n-q, n-p}$ and the Hodge diamond structure on the the ranks of the Dolbeault cohomology groups, i.e.

$$
\begin{array}{cccc}
h^{n, n} & \ldots & \cdots & h^{0, n} \\
\vdots & \ddots & \ddots & \vdots \tag{1}\\
\vdots & \ddots & h^{1,1} & h^{0,1} \\
h^{n, 0} & \ldots & h^{1,0} & h^{0,0}
\end{array}
$$

is symmetric across the two diagonal axes. Moreover, note that $\left[\omega^{\wedge p}\right] \in \mathcal{H}^{p, p}$ is nonzero, since $\left[\omega^{\wedge n}\right]$ is the volume class.

We have even stronger constraints, namely the "hard Lefschetz theorem".
Theorem 1. $L^{n-k}=\left(\cdot \wedge \omega^{n-k}\right): H^{k}(X, \mathbb{R}) \rightarrow H^{2 n-k}(X, \mathbb{R})$ is an isomorphism.
This is false for many symplectic manifolds. Moreover, combining this with Poincaré duality gives that, for $k \leq n, H^{k} \times H^{k} \rightarrow \mathbb{R}, \alpha, \beta \mapsto \int \alpha \cup \beta \cup \omega^{n-k}$ is a nondegenerate bilinear pairing (skew-symmetric if k is odd). We also have the Kodaira embedding theorem:
Theorem 2. For (X, ω) a compact Kähler manifold, $[\omega] \in H^{2}(X, \mathbb{Z}), \exists$ a projective embedding $X \rightarrow \mathbb{C P}^{N}$ realizing X as a projective algebraic variety.

We will see a symplectic geometry proof due to Donaldson.

1. Holomorphic vector bundles

Let (M, J) be a complex manifold, $E \rightarrow M$ a complex vector bundle. Then we can cover M by U_{α} s.t. the restrictions $U_{\alpha} \times\left.\mathbb{C}^{n} \cong E\right|_{U_{\alpha}} \rightarrow U_{\alpha}$ are trivial.
Definition 1. E is a holomorphic vector bundle if the transition functions $\phi_{\alpha, \beta}: U_{\alpha} \cap U_{\beta} \rightarrow \operatorname{GL}(r, \mathbb{C})$ are holomorphic.

Note that this only makes sense on a complex manifold. Now, \exists a natural $\bar{\partial}$ operator on sections given in a local trivialization by $\bar{\partial}$ (given a section s which looks like ξ_{α} in the local trivialization α, on an intersection we have that $\bar{\partial} \xi_{\alpha}=\phi_{\alpha, \beta} \bar{\partial} \xi_{\beta}$ since $\left.\bar{\partial} \phi_{\alpha, \beta}=0\right)$. This extends to $\bar{\partial}: \Omega^{p, q}(E) \rightarrow \Omega^{p, q+1}(E)$ similarly.
Definition 2. $H_{\bar{\partial}}^{q}(E)=\frac{\operatorname{Ker}\left(\bar{\partial}: \Omega^{0, q}(E) \rightarrow \Omega^{0, q+1}(E)\right)}{\operatorname{Im}\left(\bar{\partial}: \Omega^{0, q-1}(E) \rightarrow \Omega^{0, q}(E)\right)}$. In particular, $H^{0}(E)$ is the space of holomorphic sections.
Specifying the holomorphic structure on a complex vector bundle E is equivalent to specifying a $\bar{\partial}$ operator with $\bar{\partial}^{2}=0$. The $\bar{\partial}$ operator is half of a connection: in fact, ∇ a connection on E decomposes into $\nabla=$ $\nabla^{1,0}+\nabla^{0,1}$.
Proposition 1. For $(E, \bar{\partial},|\cdot|)$ a holomorphic bundle with a Hermitian metric, \exists ! Hermitian connection s.t. $\nabla^{0,1}=\bar{\partial}$.
Proof. We work in local coordinates on M, and local trivializations of E by orthonormal sections σ_{j} (but not necessarily holomorphic trivializations; $\bar{\partial} \sigma_{j}$ may be nonzero). $\nabla=d+A$ for $A=\left(a_{i j}\right)$ a matrix-valued 1-form $\left(a_{i j}=\left\langle\nabla \sigma_{j}, \sigma_{i}\right\rangle\right) . \nabla$ is Hermitian iff $a_{i j}=-\overline{a_{i j}}$, i.e. A is antihermitian, and ∇ is holomorphic, i.e. $\nabla^{0,1} s=\bar{\partial} s$ iff $A^{0,1}$ is given by $a_{i j}^{0,1}=\left\langle\bar{\partial} \sigma_{j}, \sigma_{i}\right\rangle$. Then $A^{*}=-A \Leftrightarrow A^{1,0}=-\left(A^{0,1}\right)^{*}$, i.e. $a_{i j}^{1,0}=-\overline{a_{j i}^{0,1}}$.

Equivalently, in a holomorphic trivialization, when $\overline{\bar{\partial}}$ is the usual $\overline{\bar{\partial}}$ operator, $\langle\cdot, \cdot\rangle$ given by $h=C^{\infty}$ function with values in positive definite Hermitian matrices, $\nabla=d+A$ again and ∇ is Hermitian $\Leftrightarrow d\left\langle s, s^{\prime}\right\rangle=\left\langle\nabla s, s^{\prime}\right\rangle+$ $\left\langle s, \nabla s^{\prime}\right\rangle \Leftrightarrow d\left(s^{*} h s^{\prime}\right)=\left(d s^{*}+s^{*} A^{*}\right) h s^{\prime}+s^{*} h\left(d s^{\prime}+A s^{\prime}\right) \Leftrightarrow d h=A^{*} h+h A$. On the other hand, now $\nabla^{0,1}=\bar{\partial} \Leftrightarrow$ $A^{0,1}=0$. Hence $d h=A^{*} h+h A \Leftrightarrow A=h^{-1} \partial h\left(\right.$ and $A^{*}=\bar{\partial} h \cdot h^{-1}$).
Proposition 2. In a holomorphic frame, the connection 1-form A is of type $(1,0)$, and $\partial A=-A \wedge A, R^{\nabla}=\bar{\partial} A$ is of type $(1,1)$, and $\bar{\partial} R=0$ and $\partial R=[R, A]$.

In fact, we have
Theorem 3. $\left(E, \nabla^{0,1}=\bar{\partial}^{\nabla}\right)$ is holomorphic $\Leftrightarrow\left(\bar{\partial}^{\nabla}\right)^{2}=0 \Leftrightarrow R^{0,2}=0$.
Proof. First, $A=h^{-1} \partial h$ has type $(1,0)$ by the above, and

$$
\begin{equation*}
\partial A=\partial\left(h^{-1}\right) \wedge \partial h=\left(-h^{-1}(\partial h) h^{-1}\right) \wedge \partial h=-\left(h^{-1} \partial h\right) \wedge\left(h^{-1} \partial h\right)=-A \wedge A \tag{2}
\end{equation*}
$$

by the formula for derivatives of inverses in a noncommutative setting. Second, $R^{\nabla}=d A+A \wedge A=d A-\partial A=$ $\bar{\partial} A$, hence it has type $(1,1)$. Finally, $\bar{\partial} R=\bar{\partial} \bar{\partial} A=0, \partial R=\partial \bar{\partial} A=-\bar{\partial} \partial A=\bar{\partial} A \wedge A-A \wedge \bar{\partial} A=[R, A]$.

