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SYMPLECTIC GEOMETRY, LECTURE 17 

The Hodge decomposition stated last time places strong constraints on H∗ of Kähler manifolds, e.g. dim Hk 

= Hq,p is even for k odd because C conjugation gives isomorphisms Hp,q ∼ (note that this is false for symplectic 
manifolds in general). The Hodge star ∗ gives isomorphisms Hp,q → Hn−q,n−p and the Hodge diamond structure 

∼

on the the ranks of the Dolbeault cohomology groups, i.e. 

hn,n h0,n · · · · · · 
. . . . . . . . 

(1)	
. . . . 
. .. . . h1,1 h0,1 . 

hn,0 h1,0 h0,0 · · · 
is symmetric across the two diagonal axes. Moreover, note that [ω∧p] ∈ Hp,p is nonzero, since [ω∧n] is the 
volume class. 

We have even stronger constraints, namely the “hard Lefschetz theorem”. 

Theorem 1. Ln−k = (· ∧ ωn−k) : Hk(X, R) → H2n−k(X, R) is an isomorphism. 

This is false for many symplectic manifolds. Moreover, combining this with Poincaré duality gives that, for 
k ≤ n, Hk × Hk → R, α, β �→ α ∪ β ∪ ωn−k is a nondegenerate bilinear pairing (skew-symmetric if k is odd). 
We also have the Kodaira embedding theorem: 

Theorem 2. For (X, ω) a compact Kähler manifold, [ω] ∈ H2(X, Z), ∃ a projective embedding X CPN 

realizing X as a projective algebraic variety. 
→ 

We will see a symplectic geometry proof due to Donaldson. 

1. Holomorphic vector bundles 

Let (M,J) be a complex manifold, E M a complex vector bundle. Then we can cover M by Uα s.t. the 
restrictions Uα × Cn = E Uα are trivial. Uα

∼ | → 
→ 

Definition 1. E is a holomorphic vector bundle if the transition functions φα,β : Uα ∩ Uβ GL(r, C) are 
holomorphic. 

→ 

Note that this only makes sense on a complex manifold. Now, ∃ a natural ∂ operator on sections given in a 
local trivialization by ∂ (given a section s which looks like ξα in the local trivialization α, on an intersection we 
have that ∂ξα = φα,β ∂ξβ since ∂φα,β = 0). This extends to ∂ : Ωp,q(E) Ωp,q+1(E) similarly. → 

(E) = Ker (∂:Ω0,q (E) Ω0,q+1(E))Definition 2. Hq	 →
Ω0,q (E)) 

. In particular, H0(E) is the space of holomorphic sections. 
∂ Im(∂:Ω0,q−1(E)→

Specifying the holomorphic structure on a complex vector bundle E is equivalent to specifying a ∂ operator 
with ∂ 

2 
= 0. The ∂ operator is half of a connection: in fact, � a connection on E decomposes into � = 

�1,0 + �0,1 . 

Proposition 1. For (E, ∂, |·|) a holomorphic bundle with a Hermitian metric, ∃! Hermitian connection s.t. 
�0,1 = ∂. 

Proof. We work in local coordinates on M , and local trivializations of E by orthonormal sections σj (but not 
necessarily holomorphic trivializations; ∂σj may be nonzero). � = d + A for A = (aij ) a matrix-valued 1-form 
(aij = ��σj , σi�). � is Hermitian iff aij = −aij , i.e. A is antihermitian, and � is holomorphic, i.e. �0,1s = ∂s 

iff A0,1 is given by a 0,1 = �∂σj , σi�. Then A∗ = −A A1,0 = −(A0,1)∗, i.e. a 1,0 = −a 0,1 .	 �ij	 ⇔ ij ji 
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Equivalently, in a holomorphic trivialization, when ∂ is the usual ∂ operator, �·, ·� given by h = C∞ function 
with values in positive definite Hermitian matrices, � = d + A again and � is Hermitian d�s, s�� = ��s, s�� +⇔ 

0,1�s, �s�� ⇔ d(s∗hs�) = (ds∗ + s∗A∗)hs� + s∗h(ds� + As�) ⇔ dh = A∗h + hA. On the other hand, now � = ∂ ⇔
A0,1 = 0. Hence dh = A∗h + hA A = h−1∂h (and A∗ = ∂h h−1).⇔ · 

Proposition 2. In a holomorphic frame, the connection 1-form A is of type (1, 0), and ∂A = −A∧A, R� = ∂A 
is of type (1, 1), and ∂R = 0 and ∂R = [R,A]. 

In fact, we have 

0,1Theorem 3. (E, � = ∂
�

) is holomorphic ⇔ (∂
�

)2 = 0 ⇔ R0,2 = 0. 

Proof. First, A = h−1∂h has type (1, 0) by the above, and 

(2) ∂A = ∂(h−1) ∧ ∂h = (−h−1(∂h)h−1) ∧ ∂h = −(h−1∂h) ∧ (h−1∂h) = −A ∧ A 

by the formula for derivatives of inverses in a noncommutative setting. Second, R� = dA + A ∧ A = dA − ∂A = 
∂A, hence it has type (1, 1). Finally, ∂R = ∂∂A = 0, ∂R = ∂∂A = −∂∂A = ∂A ∧ A − A ∧ ∂A = [R,A]. � 
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