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SYMPLECTIC GEOMETRY, LECTURE 16 

Prof. Denis Auroux 

Recall that we were in the midst of elliptic operator analysis of the Laplace-deRham operator Δ = (d + d∗)2 . 
We claimed that Δ was an elliptic operator, i.e. it has an invertible symbol σ(ξ) = − |ξ| 2 id. We stated that a 
differential operator L : C∞(E) C∞(F ) of order k extends to a map Ls : W s(E) W s−k(F ).→ → 

Definition 1. For L : Γ(E) Γ(F ) a differential operator, P : Γ(F ) Γ(E) is called a parametrix (or→ →
pseudoinverse) if L P − idE and P L − idF are smoothing operators, i.e. they extend continuously to 
W s(E) W s+1(E). 

◦ ◦ 
→ 

The following results can be found in Wells’ book. 

Theorem 1. Every elliptic operator has a pseudoinverse.


Corollary 1. ξ ∈ W s(E), L elliptic, Lξ ∈ C∞(F ) = ⇒ ξC∞(E).


Theorem 2. L elliptic = Ls is Fredholm, i.e. Ker Ls, Coker Ls are finite dimensional, Im Ls is closed, and
⇒
Ker Ls = Ker L ⊂ C∞(E).


Theorem 3. L elliptic, τ ∈ (Ker L∗)⊥ = Im L ⊂ C∞(F ) =⇒ ∃!ξ ∈ C∞(E) s.t. Lξ = τ and ξ ⊥ Ker L.


Theorem 4. L elliptic, self-adjoint =⇒ ∃HL, GL : C∞(E) → C∞(E) s.t.

(1) HL maps C∞(E) Ker (L),→
(2) L GL = GL ◦ L = id − HL, 
(3) GL

◦
,HL extend to bounded operators W s W s, and 

(4) C∞(E) = Ker L ⊕⊥L2 Im (L ◦ GL). 
→ 

We now return to the case of Δ = (d + d∗)2 on a compact manifold. 

Corollary 2. ∃G : Ωk → Ωk and H : Ωk → Hk = Ker Δ s.t. GΔ = ΔG = id − H and Im (GΔ) = (Hk)⊥. 

Corollary 3. Ωk = Hk ⊕⊥L2 Im d ⊕⊥L2 Im d∗. 

Remark. Every α ∈ Ωk decomposes as α = Hα + d(d∗Gα) + d∗(dGα). 

Using this decomposition, we immediately obtain the theorem 

Theorem 5 (Hodge). For M a compact, oriented Riemannian manifold, every cohomology class has a unique 
harmonic representative. 

From now on, M is a compact, Kähler manifold, with the Hodge ∗ operator on Ω∗(M) extended C-linearly 
to C-valued forms. 

Proposition 1. ∗ maps p,q n−q,n−p .→ 

Proof. Consider the standard orthonormal basis of V = T ∗M given by {x1, y1, . . . , xn, yn} with Jxj = yj and �1,0 
x 

zj = xj + iyj giving the basis for . Now, write any form α as a linear combination of 

(1) αA,B,C = zj ∧ zj ∧ zj ∧ zj 

j∈A j∈B j∈C 

where A, B, C ⊂ {1, . . . , n} are disjoint subsets. That is, A is the set of indices which contribute purely 
holomorphic terms of α, B is the set of indices which contribute purely anti-holomorphic terms to α, and C is 
the set of indices which contribute both. One can show that 

(2) ∗(αA,B,C ) = ia−b(−1) 2
1 k(k+1)+c(−2i)k−nαA,B,C� 

where C � = {1, . . . , n} � (A ∪ B ∪ C), a = A , b = B , c = C , and k = deg α = a + b + 2c. By this, 
(p, q) = (a + c, b + c)-forms map to (a + (n − a

|
−
|
b − c), b 

|
+ (
| 
n − a 

|
− b
|
− c)) = (n − q, n − p)-forms as desired. � 
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2 Prof. Denis Auroux 

Let L : Ωp,q → Ωp+1,q+1 be the map α �→ ω ∧ α, L∗ : Ωp,q → Ωp−1,q−1 the adjoint map α �→ (−1)p+q ∗ L∗. 
Furthermore, set dC = J−1dJ = (−1)k+1JdJ , with adjoint d∗ = J−1d∗J = (−1)k+1Jd∗J . On functions, we C 
have that 

(3) dcf = −Jdf = −J(∂f + ∂f) = −i∂f + i∂f = −i(∂ − ∂)f 

which extends to higher forms as well. Thus, ddC = −i(∂ + ∂)(∂ − ∂) = 2i∂∂. 

Lemma 1. For X Kähler, [L, d] = 0, [L∗, d∗] = 0, [L, d∗] = dC , [L∗, d] = −d∗ 
C . 

Proof. The first part follows from d(α ∧ ω) = dα ∧ ω. For the second, see Wells, theorem 4.8. � 

Proposition 2. ΔC = J−1ΔJ = dC d
∗ + d∗ dC = Δ C C 

Proof. By J-invariance of ω, we have that [L, J ] = [L∗, J ] = 0. Using the above identities, we have that 
[L∗, dC ] = d∗, so 

(4) Δ = dd∗ + d∗d = d[L∗, dC ] + [L∗, dC ]d = dL∗dC − ddC L
∗ + L∗dC d − dC L

∗d 

Conjugating by J simply swaps terms, since ddC = −dC d. � 

Let 

(5) 
∂∗ = − ∗ ∂∗ : Ωp,q → Ωp,q−1 

∂∗ = − ∗ ∂∗ : Ωp,q Ωp−1,q → 

so d∗ = ∂∗ + ∂
∗ 
. 

Lemma 2. ∂∗ is L2-adjoint to ∂, and ∂∗ is L2-adjoint to ∂. 

For φ, ψ ∈ Ωk(M, C), we have the natural scalar product 

(6) �φ, ψ�L2 = φ ∧ ∗ψ 
M 

Under this, the various Ωp,q are orthogonal because if φ ∈ Ωp,q, ψ ∈ Ωp�,q� 
, (p, q) = (� p�, q�), then φ ∧∗ψ is of type 

(7) (n + (p − p�), n + (q − q�)) = (� n, n) 

Finally, define the operators 

(8) � = ∂∂∗ + ∂∗∂, � = ∂∂∗ + ∂∗∂ : Ωp,q Ωp,q → 

Theorem 6. For M compact, Kähler, 

(9) Hp,q (M) = Hp,q = Ker � 
∂ � 

The proof that each ∂-cohomology class contains a unique �-harmonic form is similar to that of the Hodge 
theorem in the Riemannian case. 

Theorem 7. Δ = 2� = 2�. 

Proof. By the first lemma, d∗dc = d∗[L, d∗] = d∗Ld∗ = −[L, d∗]d∗ = −dC d
∗. Moreover, dc = −i(∂ − ∂), so 

1 1∂ = (d − idc) and ∂
∗ 

= (d∗ + id∗). Thus, 2 2 c 

4� = (d − idc)(d∗ + id∗) + (d∗ + id∗)(d − idc)c c 

(10) = (dd∗ + d∗d) + (dcd
∗ + d∗dc) + i(dd∗ + d∗d) − i(dcd

∗ + d∗dc)c c c c 

= Δ + Δc + 0 + 0 = 2Δ 

Corollary 4. Δ maps Ωp,q to itself and 

(11) Hk (M, C) = Hk = Hp,q = H
∂

p,q (M )dR Δ 
p+q=k p,q 


