SYMPLECTIC GEOMETRY, LECTURE 16

Prof. Denis Auroux

Recall that we were in the midst of elliptic operator analysis of the Laplace-deRham operator $\Delta=\left(d+d^{*}\right)^{2}$. We claimed that Δ was an elliptic operator, i.e. it has an invertible symbol $\sigma(\xi)=-|\xi|^{2}$ id. We stated that a differential operator $L: C^{\infty}(E) \rightarrow C^{\infty}(F)$ of order k extends to a map $L_{s}: W^{s}(E) \rightarrow W^{s-k}(F)$.
Definition 1. For $L: \Gamma(E) \rightarrow \Gamma(F)$ a differential operator, $P: \Gamma(F) \rightarrow \Gamma(E)$ is called a parametrix (or pseudoinverse) if $L \circ P-\mathrm{id}_{E}$ and $P \circ L-\mathrm{id}_{F}$ are smoothing operators, i.e. they extend continuously to $W^{s}(E) \rightarrow W^{s+1}(E)$.

The following results can be found in Wells' book.
Theorem 1. Every elliptic operator has a pseudoinverse.
Corollary 1. $\xi \in W^{s}(E), L$ elliptic, $L \xi \in C^{\infty}(F) \Longrightarrow \xi C^{\infty}(E)$.
Theorem 2. L elliptic $\Longrightarrow L_{s}$ is Fredholm, i.e. Ker L_{s}, Coker L_{s} are finite dimensional, $\operatorname{Im} L_{s}$ is closed, and Ker $L_{s}=\operatorname{Ker} L \subset C^{\infty}(E)$.
Theorem 3. L elliptic, $\tau \in\left(\operatorname{Ker} L^{*}\right)^{\perp}=\operatorname{Im} L \subset C^{\infty}(F) \Longrightarrow \exists!\xi \in C^{\infty}(E)$ s.t. $L \xi=\tau$ and $\xi \perp \operatorname{Ker} L$.
Theorem 4. L elliptic, self-adjoint $\Longrightarrow \exists H_{L}, G_{L}: C^{\infty}(E) \rightarrow C^{\infty}(E)$ s.t.
(1) H_{L} maps $C^{\infty}(E) \rightarrow \operatorname{Ker}(L)$,
(2) $L \circ G_{L}=G_{L} \circ L=\mathrm{id}-H_{L}$,
(3) G_{L}, H_{L} extend to bounded operators $W^{s} \rightarrow W^{s}$, and
(4) $C^{\infty}(E)=$ Ker $L \oplus_{\perp L^{2}} \operatorname{Im}\left(L \circ G_{L}\right)$.

We now return to the case of $\Delta=\left(d+d^{*}\right)^{2}$ on a compact manifold.
Corollary 2. $\exists G: \Omega^{k} \rightarrow \Omega^{k}$ and $H: \Omega^{k} \rightarrow \mathcal{H}^{k}=\operatorname{Ker} \Delta$ s.t. $G \Delta=\Delta G=\mathrm{id}-H$ and $\operatorname{Im}(G \Delta)=\left(\mathcal{H}^{k}\right)^{\perp}$.
Corollary 3. $\Omega^{k}=\mathcal{H}^{k} \oplus_{\perp L^{2}} \operatorname{Im} d \oplus_{\perp L^{2}} \operatorname{Im} d^{*}$.
Remark. Every $\alpha \in \Omega^{k}$ decomposes as $\alpha=H \alpha+d\left(d^{*} G \alpha\right)+d^{*}(d G \alpha)$.
Using this decomposition, we immediately obtain the theorem
Theorem 5 (Hodge). For M a compact, oriented Riemannian manifold, every cohomology class has a unique harmonic representative.

From now on, M is a compact, Kähler manifold, with the Hodge $*$ operator on $\Omega^{*}(M)$ extended \mathbb{C}-linearly to \mathbb{C}-valued forms.
Proposition 1. $*$ maps $\bigwedge^{p, q} \rightarrow \bigwedge^{n-q, n-p}$.
Proof. Consider the standard orthonormal basis of $V=T_{x}^{*} M$ given by $\left\{x_{1}, y_{1}, \ldots, x_{n}, y_{n}\right\}$ with $J x_{j}=y_{j}$ and $z_{j}=x_{j}+i y_{j}$ giving the basis for $\Lambda^{1,0}$. Now, write any form α as a linear combination of

$$
\begin{equation*}
\alpha_{A, B, C}=\prod_{j \in A} z_{j} \wedge \prod_{j \in B} \overline{z_{j}} \wedge \prod_{j \in C} z_{j} \wedge \overline{z_{j}} \tag{1}
\end{equation*}
$$

where $A, B, C \subset\{1, \ldots, n\}$ are disjoint subsets. That is, A is the set of indices which contribute purely holomorphic terms of α, B is the set of indices which contribute purely anti-holomorphic terms to α, and C is the set of indices which contribute both. One can show that

$$
\begin{equation*}
*\left(\alpha_{A, B, C}\right)=i^{a-b}(-1)^{\frac{1}{2} k(k+1)+c}(-2 i)^{k-n} \alpha_{A, B, C^{\prime}} \tag{2}
\end{equation*}
$$

where $C^{\prime}=\{1, \ldots, n\} \backslash(A \cup B \cup C), a=|A|, b=|B|, c=|C|$, and $k=\operatorname{deg} \alpha=a+b+2 c$. By this, $(p, q)=(a+c, b+c)$-forms map to $(a+(n-a-b-c), b+(n-a-b-c))=(n-q, n-p)$-forms as desired.

Let $L: \Omega^{p, q} \rightarrow \Omega^{p+1, q+1}$ be the map $\alpha \mapsto \omega \wedge \alpha, L^{*}: \Omega^{p, q} \rightarrow \Omega^{p-1, q-1}$ the adjoint map $\alpha \mapsto(-1)^{p+q} * L *$. Furthermore, set $d_{C}=J^{-1} d J=(-1)^{k+1} J d J$, with adjoint $d_{C}^{*}=J^{-1} d^{*} J=(-1)^{k+1} J d^{*} J$. On functions, we have that

$$
\begin{equation*}
d_{c} f=-J d f=-J(\partial f+\bar{\partial} f)=-i \partial f+i \bar{\partial} f=-i(\partial-\bar{\partial}) f \tag{3}
\end{equation*}
$$

which extends to higher forms as well. Thus, $d d_{C}=-i(\partial+\bar{\partial})(\partial-\bar{\partial})=2 i \partial \bar{\partial}$.
Lemma 1. For X Kähler, $[L, d]=0,\left[L^{*}, d^{*}\right]=0,\left[L, d^{*}\right]=d_{C},\left[L^{*}, d\right]=-d_{C}^{*}$.
Proof. The first part follows from $d(\alpha \wedge \omega)=d \alpha \wedge \omega$. For the second, see Wells, theorem 4.8.
Proposition 2. $\Delta_{C}=J^{-1} \Delta J=d_{C} d_{C}^{*}+d_{C}^{*} d_{C}=\Delta$
Proof. By J-invariance of ω, we have that $[L, J]=\left[L^{*}, J\right]=0$. Using the above identities, we have that $\left[L^{*}, d_{C}\right]=d^{*}$, so

$$
\begin{equation*}
\Delta=d d^{*}+d^{*} d=d\left[L^{*}, d_{C}\right]+\left[L^{*}, d_{C}\right] d=d L^{*} d_{C}-d d_{C} L^{*}+L^{*} d_{C} d-d_{C} L^{*} d \tag{4}
\end{equation*}
$$

Conjugating by J simply swaps terms, since $d d_{C}=-d_{C} d$.
Let

$$
\begin{align*}
& \overline{\partial^{*}}=-* \partial *: \Omega^{p, q} \rightarrow \Omega^{p, q-1} \\
& \partial^{*}=-* \bar{\partial} *: \Omega^{p, q} \rightarrow \Omega^{p-1, q} \tag{5}
\end{align*}
$$

so $d^{*}=\partial^{*}+\bar{\partial}^{*}$.
Lemma 2. $\overline{\partial^{*}}$ is L^{2}-adjoint to $\bar{\partial}$, and ∂^{*} is L^{2}-adjoint to ∂.
For $\phi, \psi \in \Omega^{k}(M, \mathbb{C})$, we have the natural scalar product

$$
\begin{equation*}
\langle\phi, \psi\rangle_{L^{2}}=\int_{M} \phi \wedge * \bar{\psi} \tag{6}
\end{equation*}
$$

Under this, the various $\Omega^{p, q}$ are orthogonal because if $\phi \in \Omega^{p, q}, \psi \in \Omega^{p^{\prime}, q^{\prime}},(p, q) \neq\left(p^{\prime}, q^{\prime}\right)$, then $\phi \wedge * \bar{\psi}$ is of type

$$
\begin{equation*}
\left(n+\left(p-p^{\prime}\right), n+\left(q-q^{\prime}\right)\right) \neq(n, n) \tag{7}
\end{equation*}
$$

Finally, define the operators

$$
\begin{equation*}
\square=\partial \partial^{*}+\partial^{*} \partial, \bar{\square}=\overline{\partial \partial^{*}}+\overline{\partial^{*} \partial}: \Omega^{p, q} \rightarrow \Omega^{p, q} \tag{8}
\end{equation*}
$$

Theorem 6. For M compact, Kähler,

$$
\begin{equation*}
H_{\bar{\partial}}^{p, q}(M)=\mathcal{H}_{\bar{\square}}^{p, q}=\text { Ker } \bar{\square} \tag{9}
\end{equation*}
$$

The proof that each $\bar{\partial}$-cohomology class contains a unique $\bar{\square}$-harmonic form is similar to that of the Hodge theorem in the Riemannian case.

Theorem 7. $\Delta=2 \square=2 \bar{\square}$.
Proof. By the first lemma, $d^{*} d_{c}=d^{*}\left[L, d^{*}\right]=d^{*} L d^{*}=-\left[L, d^{*}\right] d^{*}=-d_{C} d^{*}$. Moreover, $d_{c}=-i(\partial-\bar{\partial})$, so $\bar{\partial}=\frac{1}{2}\left(d-\operatorname{id}_{c}\right)$ and $\bar{\partial}^{*}=\frac{1}{2}\left(d^{*}+i d_{c}^{*}\right)$. Thus,

$$
\begin{align*}
4 \bar{\square} & =\left(d-\mathrm{id}_{c}\right)\left(d^{*}+\mathrm{id}_{c}^{*}\right)+\left(d^{*}+\mathrm{id}_{c}^{*}\right)\left(d-\mathrm{id}_{c}\right) \\
& =\left(d d^{*}+d^{*} d\right)+\left(d_{c} d_{c}^{*}+d_{c}^{*} d_{c}\right)+i\left(d d_{c}^{*}+d_{c}^{*} d\right)-i\left(d_{c} d^{*}+d^{*} d_{c}\right) \tag{10}\\
& =\Delta+\Delta_{c}+0+0=2 \Delta
\end{align*}
$$

Corollary 4. Δ maps $\Omega^{p, q}$ to itself and

$$
\begin{equation*}
H_{d R}^{k}(M, \mathbb{C})=\mathcal{H}_{\Delta}^{k}=\bigoplus_{p+q=k} \mathcal{H}^{p, q}=\bigoplus_{p, q} H_{\bar{\partial}}^{p, q}(M) \tag{11}
\end{equation*}
$$

