SYMPLECTIC GEOMETRY, LECTURE 16

Prof. Denis Auroux

Recall that we were in the midst of elliptic operator analysis of the Laplace-deRham operator $\Delta = (d + d^*)^2$. We claimed that Δ was an elliptic operator, i.e. it has an invertible symbol $\sigma(\xi) = -|\xi|^2$ id. We stated that a differential operator $L: C^{\infty}(E) \to C^{\infty}(F)$ of order k extends to a map $L_s: W^s(E) \to W^{s-k}(F)$.

Definition 1. For $L : \Gamma(E) \to \Gamma(F)$ a differential operator, $P : \Gamma(F) \to \Gamma(E)$ is called a parametrix (or pseudoinverse) if $L \circ P - \operatorname{id}_E$ and $P \circ L - \operatorname{id}_F$ are smoothing operators, i.e. they extend continuously to $W^s(E) \to W^{s+1}(E)$.

The following results can be found in Wells' book.

Theorem 1. Every elliptic operator has a pseudoinverse.

Corollary 1. $\xi \in W^s(E), L$ elliptic, $L\xi \in C^{\infty}(F) \implies \xi C^{\infty}(E)$.

Theorem 2. L elliptic $\implies L_s$ is Fredholm, i.e. Ker L_s , Coker L_s are finite dimensional, Im L_s is closed, and Ker $L_s = \text{Ker } L \subset C^{\infty}(E)$.

Theorem 3. L elliptic, $\tau \in (\text{Ker } L^*)^{\perp} = \text{Im } L \subset C^{\infty}(F) \implies \exists ! \xi \in C^{\infty}(E) \text{ s.t. } L\xi = \tau \text{ and } \xi \perp \text{Ker } L.$

Theorem 4. L elliptic, self-adjoint $\implies \exists H_L, G_L : C^{\infty}(E) \to C^{\infty}(E)$ s.t.

- (1) H_L maps $C^{\infty}(E) \to \text{Ker}(L)$,
- (2) $L \circ G_L = G_L \circ L = \mathrm{id} H_L$,
- (3) G_L, H_L extend to bounded operators $W^s \to W^s$, and
- (4) $C^{\infty}(E) = \operatorname{Ker} L \oplus_{\perp L^2} \operatorname{Im} (L \circ G_L).$

We now return to the case of $\Delta = (d + d^*)^2$ on a compact manifold.

Corollary 2. $\exists G : \Omega^k \to \Omega^k \text{ and } H : \Omega^k \to \mathcal{H}^k = \text{Ker } \Delta \text{ s.t. } G\Delta = \Delta G = \text{id} - H \text{ and } \text{Im } (G\Delta) = (\mathcal{H}^k)^{\perp}.$

Corollary 3. $\Omega^k = \mathcal{H}^k \oplus_{\perp L^2} \operatorname{Im} d \oplus_{\perp L^2} \operatorname{Im} d^*$.

Remark. Every $\alpha \in \Omega^k$ decomposes as $\alpha = H\alpha + d(d^*G\alpha) + d^*(dG\alpha)$.

Using this decomposition, we immediately obtain the theorem

Theorem 5 (Hodge). For M a compact, oriented Riemannian manifold, every cohomology class has a unique harmonic representative.

From now on, M is a compact, Kähler manifold, with the Hodge * operator on $\Omega^*(M)$ extended \mathbb{C} -linearly to \mathbb{C} -valued forms.

Proposition 1. * maps $\bigwedge^{p,q} \to \bigwedge^{n-q,n-p}$.

Proof. Consider the standard orthonormal basis of $V = T_x^* M$ given by $\{x_1, y_1, \ldots, x_n, y_n\}$ with $Jx_j = y_j$ and $z_j = x_j + iy_j$ giving the basis for $\bigwedge^{1,0}$. Now, write any form α as a linear combination of

(1)
$$\alpha_{A,B,C} = \prod_{j \in A} z_j \wedge \prod_{j \in B} \overline{z_j} \wedge \prod_{j \in C} z_j \wedge \overline{z_j}$$

where $A, B, C \subset \{1, \ldots, n\}$ are disjoint subsets. That is, A is the set of indices which contribute purely holomorphic terms of α , B is the set of indices which contribute purely anti-holomorphic terms to α , and C is the set of indices which contribute both. One can show that

(2)
$$*(\alpha_{A,B,C}) = i^{a-b}(-1)^{\frac{1}{2}k(k+1)+c}(-2i)^{k-n}\alpha_{A,B,C'}$$

where $C' = \{1, ..., n\} \setminus (A \cup B \cup C), a = |A|, b = |B|, c = |C|$, and $k = \deg \alpha = a + b + 2c$. By this, (p,q) = (a+c, b+c)-forms map to (a + (n-a-b-c), b + (n-a-b-c)) = (n-q, n-p)-forms as desired. \Box

Prof. Denis Auroux

Let $L: \Omega^{p,q} \to \Omega^{p+1,q+1}$ be the map $\alpha \mapsto \omega \wedge \alpha, L^*: \Omega^{p,q} \to \Omega^{p-1,q-1}$ the adjoint map $\alpha \mapsto (-1)^{p+q} * L^*$. Furthermore, set $d_C = J^{-1}dJ = (-1)^{k+1}JdJ$, with adjoint $d_C^* = J^{-1}d^*J = (-1)^{k+1}Jd^*J$. On functions, we have that

(3)
$$d_c f = -J df = -J(\partial f + \overline{\partial} f) = -i\partial f + i\overline{\partial} f = -i(\partial - \overline{\partial})f$$

which extends to higher forms as well. Thus, $dd_C = -i(\partial + \overline{\partial})(\partial - \overline{\partial}) = 2i\partial\overline{\partial}$.

Lemma 1. For X Kähler, $[L, d] = 0, [L^*, d^*] = 0, [L, d^*] = d_C, [L^*, d] = -d_C^*$.

Proof. The first part follows from $d(\alpha \wedge \omega) = d\alpha \wedge \omega$. For the second, see Wells, theorem 4.8.

Proposition 2. $\Delta_C = J^{-1}\Delta J = d_C d_C^* + d_C^* d_C = \Delta$

Proof. By J-invariance of ω , we have that $[L, J] = [L^*, J] = 0$. Using the above identities, we have that $[L^*, d_C] = d^*$, so

(4)
$$\Delta = dd^* + d^*d = d[L^*, d_C] + [L^*, d_C]d = dL^*d_C - dd_CL^* + L^*d_Cd - d_CL^*d$$

Conjugating by J simply swaps terms, since $dd_C = -d_C d$.

Let

(5)
$$\overline{\partial^*} = -*\partial^* : \Omega^{p,q} \to \Omega^{p,q-1}$$
$$\partial^* = -*\overline{\partial}^* : \Omega^{p,q} \to \Omega^{p-1,q}$$

so $d^* = \partial^* + \overline{\partial}^*$.

Lemma 2. $\overline{\partial^*}$ is L^2 -adjoint to $\overline{\partial}$, and ∂^* is L^2 -adjoint to ∂ .

For $\phi, \psi \in \Omega^k(M, \mathbb{C})$, we have the natural scalar product

(6)
$$\langle \phi, \psi \rangle_{L^2} = \int_M \phi \wedge *\overline{\psi}$$

Under this, the various $\Omega^{p,q}$ are orthogonal because if $\phi \in \Omega^{p,q}$, $\psi \in \Omega^{p',q'}$, $(p,q) \neq (p',q')$, then $\phi \wedge *\overline{\psi}$ is of type

(7)
$$(n + (p - p'), n + (q - q')) \neq (n, n)$$

Finally, define the operators

(8)
$$\Box = \partial \partial^* + \partial^* \partial, \overline{\Box} = \overline{\partial \partial^*} + \overline{\partial^* \partial} : \Omega^{p,q} \to \Omega^{p,q}$$

Theorem 6. For M compact, Kähler,

(9)
$$H^{p,q}_{\overline{\partial}}(M) = \mathcal{H}^{p,q}_{\overline{\Box}} = \operatorname{Ker} \overline{\Box}$$

The proof that each $\overline{\partial}$ -cohomology class contains a unique $\overline{\Box}$ -harmonic form is similar to that of the Hodge theorem in the Riemannian case.

Theorem 7. $\Delta = 2\Box = 2\overline{\Box}$.

Proof. By the first lemma, $d^*d_c = d^*[L, d^*] = d^*Ld^* = -[L, d^*]d^* = -d_Cd^*$. Moreover, $d_c = -i(\partial - \overline{\partial})$, so $\overline{\partial} = \frac{1}{2}(d - \mathrm{id}_c)$ and $\overline{\partial}^* = \frac{1}{2}(d^* + id_c^*)$. Thus,

(10)

$$4\overline{\Box} = (d - \mathrm{id}_c)(d^* + \mathrm{id}_c^*) + (d^* + \mathrm{id}_c^*)(d - \mathrm{id}_c)$$

$$= (dd^* + d^*d) + (d_cd_c^* + d_c^*d_c) + i(dd_c^* + d_c^*d) - i(d_cd^* + d^*d_c)$$

$$= \Delta + \Delta_c + 0 + 0 = 2\Delta$$

Corollary 4. Δ maps $\Omega^{p,q}$ to itself and

(11)
$$H^k_{dR}(M,\mathbb{C}) = \mathcal{H}^k_{\Delta} = \bigoplus_{p+q=k} \mathcal{H}^{p,q} = \bigoplus_{p,q} H^{p,q}_{\overline{\partial}}(M)$$